Unit step response of
second-order systems
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Performing mverse Laplace transform,
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The plot of ¢ sin(e,¢ +6) is shown in Figure.

The steady-state response s,
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Thus, the system has zero steady-state etror.
The pole of T(s) dictates the response,
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-

/'\ c -

o
P sin(w,1 +0)

!



Time response specifications

Control systems are generally designed with
damping less than one, 1.e., oscillatory step
response. Higher order control systems usually
have a pair of complex conjugate poles with
damping less than unity that dominate over the
other poles. Therefore the time response of
second- and higher-order control systems to a
step 1mnput is generally of damped oscillatory
nature as shown in Figure next (next page).



[n specifymg the transient-response characteristics of a control system to a unit step mput, we
usually spectfy the following

. Delay time, ¢,
2. Rise time, ¢
3. Peak time, ;

4. Peak overshoot, M ,

5. Settling time, ¢

6. Steady-state error, e_



