
Continuous-time 

(CT) system analysis using LT 



• Consider the following CT LTI system: 

 

 

 

• Assumption: the impulse response h(t) is 

absolutely integrable, i.e., 

CT, LTI Systems 

( )y t( )x t ( )h t
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(this has to do with system stability) 



• What’s the respoŶse y(t) of this system to the 

input signal 

 

 

• We start by looking for the response yc(t) of 

the same system to 

Response of a CT, LTI System to a 
Sinusoidal Input  
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• The output is obtained through convolution 

as 

Response of a CT, LTI System to a 
Complex Exponential Input 
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• By defining  

 

 

   it is 

 

 

• Therefore, the response of the LTI system to a 

complex exponential is another complex 

exponential with the same frequency 

The Frequency Response of a CT, LTI 
System 
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          is the frequency 

response of the CT, LTI 

system = Fourier transform 

of h(t) 
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• Since             is in general a complex 

quantity, we can write 

Analyzing the Output Signal yc(t) 
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• With Euler’s forŵulas we caŶ express x;tͿ as    
 

     

 

Using the previous result, the response is 

Response of a CT, LTI System to a 
Sinusoidal Input  
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Response of a CT, LTI System to a 
Sinusoidal Input – Cont’d 

• If h(t) is real, then       and 

 

 

• Thus we can write y(t) as 
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• Thus, the response to  

 

    is 

 

   which is also a sinusoid with the same 

frequency      but with the amplitude scaled 

by the factor                and with the phase 

shifted by amount 

Response of a CT, LTI System to a 
Sinusoidal Input – Cont’d 
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• Suppose that the frequency response of a 

CT, LTI system is defined by the following 

specs: 

 

Example: Response of a CT, LTI 
System to Sinusoidal Inputs 
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