Unit 1 Lecture 1 Digital system and binary numbers

Dronacharya Group of Institutions

Analog/Analogue Systems

- Analogue Systems
 - V(t) can have any value between its minimum and maximum value

Digital Systems

- Digital Systems
 - V(t) must take a value selected from a set of values called an alphabet
 - Binary digital systems form the basis of almost all hardware systems currently

For example, Binary Alpha

Slide example

• Consider a child's slide in a playground:

Relationship between Analogue and Digital systems

Advantages of Digital Systems

- Analogue systems: slight error in input yields large error in output
- Digital systems more accurate and reliable
- Computers use digital circuits internally
- Interface circuits (for instance, sensors and actuators) are often analogue

Exercise

- Explain whether the following are analog or digital:
 - A photograph or painting
 - A scanned image
 - Sound from a computer's loud speaker
 - Sound file stored on disc

Coding:

• A single binary input can only have two values: True or False (Yes or No) (1 or 0)

combinations

Combinations

- Example 1:
 - How many combinations are possible with 10 binary inputs?
- Example 2:
 - What is the minimum number of bits needed to represent the digits '0' to '9' as a binary code?"

Decimal systems

- Number Representation
 - Difficult to represent Decimal numbers directly in a digital system
 - Easier to convert them to binary
 - There is a weighting system:

$403 = 4 \times 100 + 0 \times 10 + 3 \times 1$

or in, powers of 10:

 $403_{10} = 4x10^2 + 0x10^1 + 3x10^0 = 400 +$

 Both Decimal and Binary numbers use a positional weighting system, eg:

 $1010_2 = 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0 = 1x8 + 0x4 + 1x2 + 0x1 = 10_{10}$

decimal		100 (10 ²)	10 (10 ¹)	1 (10 ⁰)	
		4	0	3	400 + 0 + 3
binary	8 (2 ³)	4 (2 ²)	2 (2 ¹)	1 (2 ⁰)	
	1	0	0	1	8 + 0 + 0 + 1

Binary to decimal

 Multiply each 1 bit by the appropriate power of 2 and add them together.

?	?	128	64	32	16	8	4	2	1
		1	0	0	0	0	0	1	1
	1	0	1	0	0	1	1	0	0

 $10000011_2 = \dots _{10}$?

 $101001100_2 = \dots _{10}$?

Decimal to Binary

An alternative way is to use the "placement" method

128	64	32	16	8	4	2	1
120	04	52	10	0		Ľ	

128 goes into 155 once leaving 27 to be placed

So 64 and 32 are too big (make them zero) 16 goes in once leaving 11

and so on...

1	0	0	1		

- 6 of the possible 16 values unused
- example $453_{10} = 0100\ 0101\ 0011_{BCD}$
- Note that BCD code is longer than a direct representation in natural binary code:
- 453 = 111000101

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Hexadecimal and Octal

- Writing binary numbers as strings of 1s and 0s can be very tedious
- Octal (base 8) and Hexadecimal (base 16) notations can be used to reduce a long string of binary digits.

octal	512 (8 ³)	64 (8 ²)	8 (8 ¹)	1 (8 ⁰)		
	1	2	0	7	512 + 128 + 7	
hexadecimal		256 (16 ²)	16 (16 ¹)	1 (16 ⁰)		
1 A F 256 + 160 + 15						
Notice that hexadecimal requires 15 symbols (each number						

system needs 0 – base-1 symbols) and therefore A – F are used after 9.

Octal as shorthand for Binary

Each octal digit corresponds to 3 binary bits

binary	octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

To convert a binary string: 10011101010011

Split into groups of 3:

010 011 101 010 011

2 3 5 2 3

Thus $10011101010011_2 = 23523_8$

Similarly with Hexadecimal

• Each hex digit corresponds to 4 binary bits

binary	hex	binar
0000	0	1000
0001	1	1001
0010	2	1010
0011	3	1011
0100	4	1100
0101	5	1101
0110	6	1110
0111	7	1111

binary	hex
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F