
Lecture 2

Dronacharya Group of Institutions

Signed Integer Representation
•Fractional number representation (10.3456) or floating
point representation (i.e. 9.23 x 1013) is not the prime
discussion here.

•Signed integer representation will be discussed.

•The PROBLEM with signed integers (- 45, + 27, -99) is
the SIGN! How do we encode the sign?

•The sign is an extra piece of information that has to be
encoded in addition to the magnitude.

•what can we do??

Representation of Negative
Numbers
• Signed-Magnitude Representation: Negates a

number by changing its sign.
• Complement Number Systems: negates a

number by taking its complement.
– One’s-Complement
– Two’s-Complement

Signed Magnitude Representation
• Magnitude is magnitude, does not change with sign

(+3)10 (0 0 1 1)2

(−3)10 (1 0 1 1)2

• Can’t include the sign bit in ‘Addition’

0 0 1 1 (+3)10
+ 1 0 1 1 (−3)10

1 1 1 0 (−6)10

Sign Magnitude

S Magnitude (Binary)

Signed Magnitude Representation

Signed Magnitude (SM) is a method for encoding
signed integers.

The Most Significant Bit is used to represent the sign.
‘1’ is used for a ‘-’ (negative sign), a ‘0’ for a ‘+’
(positive sign).

The format of a SM number in 8 bits is:

Smmmmmmm

where ‘s’ is the sign bit and the other 7 bits represent
the magnitude.

NOTE: for positive numbers, the result is the same as
the unsigned binary representation.

Signed Magnitude Examples
(8 bits)

-5 = 1 00001012 = 8516
+5 = 0 00001012 = 0516
+127 = 0 11111112 = 7F16
-127 = 1 11111112 = FF16
+ 0 = 0 00000002 = 0016
- 0 = 1 00000002 = 8016

For 8 bits, can represent the signed integers -127 to +127.

For N bits, can represent the signed integers

-(2(N-1) - 1) to + (2(N-1) - 1)

Signed Magnitude comments
Signed magnitude easy to understand and encode. Is used today
in some applications.

One problem is that it has two ways of representing 0 (-0, and +0)
. Mathematically speaking, no such thing as two representations
for zeros.

Another problem is that addition of K + (-K) does not give Zero!
-5 + 5 = 8516 + 0516 = 8A16 = -10 !!!

Have to consider the sign when doing arithmetic for signed
magnitude representation.

Complement Number Systems
• Two numbers in a complement number system

can be added/subtracted directly without the
sign and magnitude checks.

• Fixed number of digits, n
– D=dn-1dn-2…d1d0

• One’s Complement
• Two’s Complement

One’s Complement
Representation
To encode a negative number, get the binary
representation of its magnitude, then COMPLEMENT
each bit. Complementing each bit mean that 1s are
replaced with 0s, 0s are replaced with 1s.

What is -5 in Ones Complement, 8 bits?

The magnitude 5 in 8-bits is 000001012 = 0516

Now complement each bit: 111110102 = FA16
FA16 is the 8-bit, ones complement number of -5.

NOTE: positive numbers in 1s complement are simply
their binary representation.

One’s Complement Examples
-5 = 111110102 = FA16
+5 = 000001012 = 0516
+127 = 011111112 = 7F16
-127 = 100000002 = 8016
+ 0 = 000000002 = 0016
- 0 = 111111112 = FF16

For 8 bits, can represent the signed integers -127 to +127.

For N bits, can represent the signed integers

-(2(N-1) - 1) to + (2(N-1) - 1)

One’s Complement Comments
Still have the problem that there are two ways of
representing 0 (-0, and +0) . Mathematically speaking, no
such thing as two representations for zeros.

However, addition of K + (-K) now gives Zero!

-5 + 5 = FA16 + 0516 = FF16 = -0 !!!

Unfortunately, K + 0 = K only works if we use +0, does
not work if we use -0.

5 + (+0) = 0516 + 0016 = 0516 = 5 (ok)

5 + (-0) = 0516 + FF16 = 0416 = 4 !!! (wrong)

Two’s Complement Representation
To encode a negative number, get the binary representation of
its magnitude, COMPLEMENT each bit, then ADD 1. (get
Ones complement, then add 1).

What is -5 in Twos Complement, 8 bits?

The magnitude 5 in 8-bits is 000001012 = 0516

Now complement each bit: 111110102 = FA16
Now add one: FA16 + 1 = FB16
FB16 is the 8-bit, twos complement representation of -5.

NOTE: positive numbers in 2s complement are simply their
binary representation.

Two’s Complement Examples
-5 = 111110112 = FB16
+5 = 000001012 = 0516
+127 = 011111112 = 7F16
-127 = 100000012 = 8116
-128 = 100000002 = 8016 (note the extended range!)
+ 0 = 000000002 = 0016
- 0 = 000000002 = 0016 (only 1 zero!!!)

For 8 bits, can represent the signed integers -128 to +127.

For N bits, can represent the signed integers

-2(N-1) to +(2(N-1) - 1)

Note that negative range extends one more than positive range.

Two’s Complement Comments

Two’s complement is the method of choice for representing
signed integers.

It has none of the drawbacks of Signed Magnitude or Ones
Complement.

There is only one zero, and K + (-K) = 0.

-5 + 5 = FB16 + 0516 = 0016 = 0 !!!

Normal binary addition is used for adding numbers that
represent twos complement integers.

Sign Extended 2’s Complement

•What happens if we need to represent the number in with more
bits? Lets say 10 bits.

What is -5 in Twos Complement, 8 bits?
The magnitude 5 in 10-bits is 00000001012 = 00516

Now complement each bit: 11111110102 = 3FA16
Now add one: 3FA16 + 1 = 3FB16
3FB16 is the 10-bit, twos complement representation of -5.

NOTE: The 8 bit representation of -5 is 111110112

The 10 bit representation of -5 is 11111110112

Sign Extended 2’s Complement
• 12-bit representation of the same numbers

-5 = 1111111110112 = FFB16
+5 = 0000000001012 = 00516
+127 = 0000011111112 = 07F16
-127 = 1111100000012 = F8116
-128 = 1111100000002 = F8016
+ 0 = 0000000000002 = 00016
- 0 = 0000000000002 = 00016

Compare 12 bits vs. 8 bits

-5 = 1111111110112 = 111110112
+5 = 0000000001012 = 000001012

+127 = 0000011111112 = 011111112
-127 = 1111100000012 = 100000012
-128 = 1111100000002 = 100000002
+ 0 = 0000000000002 = 000000002
- 0 = 0000000000002 = 000000002

12 bits 8 bits

Binary Codes
 Group of n bits

 Up to 2n combinations
 Each combination represents an element of information

 Binary Coded Decimal (BCD)
 Each Decimal Digit is represented

by 4 bits
 (0 – 9) Valid combinations
 (10 – 15) Invalid combinations

Decimal BCD
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

BCD Addition
 One decimal digit + one decimal digit

 If the result is 1 decimal digit (≤ 9), then it is a simple
binary addition
Example:

 If the result is two decimal digits (≥ 10), then binary
addition gives invalid combinations
Example:

5
+ 3

8

0 1 0 1
+ 0 0 1 1

1 0 0 0

5
+ 5
1 0

0 1 0 1
+ 0 1 0 1

1 0 1 00 0 0 1 0 0 0 0

BCD Addition
 If the binary result

is greater than 9,
correct the result by
adding 6

20 / 45

5
+ 5
1 0

0 1 0 1
+ 0 1 0 1

1 0 1 0
+ 0 1 1 0

0 0 0 1 0 0 0 0

Two Decimal Digits

Multiple Decimal Digits

3 5 1

0 0 1 1 0 1 0 1 0 0 0 1

Gray Code

 One bit changes from
one code to the next
code

 Different than Binary

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Decimal Gray
00 0000
01 0001
02 0011
03 0010
04 0110
05 0111
06 0101
07 0100
08 1100
09 1101
10 1111
11 1110
12 1010
13 1011
14 1001
15 1000

ASCII Code
American
Standard Code
for Information
Interchange

Info 7-bit Code
A 1000001
B 1000010...

...
Z 1011010

a 1100001
b 1100010...

...
z 1111010

@ 1000000
? 0111111
+ 0101011

Error Detecting Codes
 Parity

One bit added to a group of bits to make the total
number of ‘1’s (including the parity bit) even or odd

Even

 Odd

 Good for checking single-bit errors

1 0 1 1 1 1 0 0 0 0 0 10

0 0 1 1 1 1 0 0 0 0 0 11

4-bit Example 7-bit Example

Summary
• Signed-magnitude, two’s complement, one’s

complement
• Different for negatives numbers
• Representations of positive numbers are SAME.
• 0 may have different representations.
• Sign bit: 0 for positive, 1 for negative
• To use more bits, extend the sign

