NAND and NOR
implementation
Lecture 4

Dronacharya Group of Institutions

Overview

» Developing NAND circuits from K-maps
» Two-level implementations
- Convert from AND/OR to NAND (again!)
» Multi-level NAND implementations
- Convert from a network of AND/ORs
» Exclusive OR
o Comparison with SOP

» Parity checking and detecting circuitry
- Efficient with XOR gates!

NAND-NAND & NOR-NOR
Networks

DeMorgan’s Law:
(@a+ b)) =a b’ (ab)’ =a + b’
a+b =@b) (ab) =@ +Db’)
R w S o TR, o B
Oyl A D

push bubbles or introduce in pairs or remove pairs.

e

NAND-NAND Networks
» Mapping from AND/OR to NAND/NAND

a)

b} =

®

C)

L e s
v

Implementations of Two-level Logic

» Sum-of-products "D
- AND gates to form product terms | | [°
(minterms) o _D 5
> OR gate to form sum [
» Product-of-sums [iEss
- OR gates to form sum terms

(maxterms) i D_ =

- AND gates to form product

;I

H= >

Two-level Logic using NAND Gates

» Replace minterm AND gates with NAND gates
» Place compensating inversion at inputs of OR gate

==

0

D 2

Wil

Two-level Logic using NAND Gates
(cont’d)

» OR gate with inverted inputs is a NAND gate
- de Morgan's: A'+ B'= (A = B)
» Two-level NAND-NAND network

> Inverted inputs are not counted

 In a typical circuit, inversion is done once and signal
distributed

=0 ——0

3 | =D

JUL
/
B[e[e
Bivie

Conversion Between Forms

» Convert from networks of ANDs and ORs to
networks of NANDs and NORs
> Introduce appropriate inversions ("bubbles")

» Each introduced "bubble" must be matched by
a corresponding "bubble”
> Conservation of inversions

> Do not alter logic function
» Example: AND/OR to NAND/NAND _‘>o__°

>_

~ |NAND po——
g |

oL |
NAND p——
K [TV

“INAND)—— Z

Conversion Between Forms
(cont’d)

» Example: verify equivalence of two forms

/;::D‘_L /; :Z@‘T_
Ej'D Z g@ :

Z=[(A +B) «(C «D)' I’

=[(A"+B") « (C'+D") I’
=[(A"+B")" +(C*+D")"]

Mm .

Conversion to NAND Gates

» Start with SOP (Sum of Products)
> circle 1s in K-maps
» Find network of OR and AND gates
A —

:
oL L D —>
D

(a) AND_OR network

Bubbles cancel

DD

(b) First step in NAND conversion

dded inverter .
/ dded inverter
A 1
B'—]): :‘ >

D El F

(c) Completed conversion

=D
E D_F

Multi-level Logic

b A D AE R R B D R B R I DR R G R R RS
- Reduced sum-of-products form - already simplified
° 6 X 3-Input AND gates + 1 x 7-input OR gate (may not exist!)
o 25 wires (19 literals plus 6 internal wires)
» X=(A+B+C)(D+E)F + G
> Factored form - not written as two-level S-o0-P

1 X 3-Input OR gate, 2 X 2-input OR gates, 1 X 3-input AND
gate

- 10 wires (7 literals plus 3 internal wires)
b St

) A gy el e
E::D——‘ ‘ ‘

Conversion of Multi-level
Logic to NAND Gates

Level 1 Level 2 Level 3 Level 4

» F=AB+CD)+BC

Original
AND-OR
network

Introduction and
conservation of
bubbles

Redrawn in terms
of conventional
NAND gates

Conversion Between Forms

» Example X &
(@) B e 5| it (b)
D D
Original circuit Add double bubbles at inputs

U ow >»

A i 8
©) :13&)(? TO]EDF Dg D%TDF -

Distribute bubbles
some mismatches

Insert inverters to fix mismatches

Exclusive-OR and Exclusive—-NOR Circuits

Exclusive-OR (XOR) produces a HIGH output whenever the two
Inputs are at opposite levels.

:
A———ﬂF{ 2
B

B

B - W =1 b
= o 4do{m
Q= 2 O|x

Anelll
ol

XOR gate symbols

X=A®@B

A = AB + AB A [==y
=1 |—ex=A®B
B B —

Exclusive-NOR Circuits

Exclusive-NOR (XNOR) produces a HIGH output whenever the two
Inputs are at the same level.

i
I

- 2 0oo|®
—o-o|m

- O O = |X

DX_:.AB +AB

(2)

A

Y

XNOR gate symbols

A x=A®B=AB+ AB A 0— x=A@B
=i L.
B B &—

(b) (€)

Exclusive—NOR Circuits

XNOR gate may be used to simplify circuit implementation.

XOR Function

» XOR function can also be implemented with AND/OR gates (also
NANDS).

x -
o
xDy
>0
y }
(a) With AND-OR-NOT gates
X

B

>

S

(b) With NAND gates

R Fig. 3-32 Exclusive-OR Implementations

XOR Function

» Even function — even number of inputs are 1.
» Odd function — odd number of inputs are 1.

BC B BC B
A 00 01 11 10 A 00 01 11 10
0 1 1 of 1 1
A1l 1 1 Al 1 1
C C
(a) Odd function (a) Even function
F=A®B®DC F=(ADB®C)

Fig. 3-33 Map for a Three-variable Exclusive-OR Function

Parity Generation and Checking

Even-parity generator

Ds
Original D) * 7
data ;
1) ® \ Parity (P)
) —>

Transmitted
data with

_b..
_’-
|_> parity bit

()

Even-parity checker

Ds) o
Error (E)

From D, {1 = error
transmitter 0 = no error}

D,

'IJ
AV

Dy

(b)

XOR gates used to implement the parity generator and the parity
- checker for an even-parity system.

Summary

Follow rules to convert between AND/OR
representation and symbols

Conversions are based on DeMorgan’s Law
NOR gate implementations are also possible

XORs provide straightforward

iImplementation for some functions

Used for parity generation and checking
XOR circuits could also be implemented using AND/Ors

Next time: Hazards

