Lecture 5

Quine Mc-Clusky method (Tabular method)

Dronacharya Group of Institutions

Quine-McCluskey (Tabular) Minimization

- Two step process utilizing tabular listings to:
 - Identify prime implicants (implicant tables)
 - Identify minimal PI set (cover tables)
- All work is done in tabular form
 - Number of variables is not a limitation
 - Basis for many computer implementations
 - Don't cares are easily handled
- Proper organization and term identification are key factors for correct results

Quine-McCluskey Minimization (cont.)

- Terms are initially listed one per line in groups
 - Each group contains terms with the same number of true and complemented variables
 - Terms are listed in numerical order within group
- Terms and implicants are identified using one of three common notations
 - full variable form
 - cellular form
 - 1,0,- form

Notation Forms

- Full variable form variables and complements in algebraic form
 - hard to identify when adjacency applies
 - very easy to make mistakes
- Cellular form terms are identified by their decimal index value
 - Easy to tell when adjacency applies; indexes must differ by power of two (one bit)
 - Implicants identified by term nos. separated by comma; differing bit pos. in () following terms

Notation Forms (cont.)

- 1,0,- form terms are identified by their binary index value
 - Easier to translate to/from full variable form
 - Easy to identify when adjacency applies, one bit is different
 - shows variable(s) dropped when adjacency is used
- Different forms may be mixed during the minimization

Example of Different Notations $F(A, B, C, D) = \Sigma m(4,5,6,8,10,13)$					
1	F(A, B, C, D) =	= 2 III(4,3,0,8,1	(0,13)		
]	Full variable	Cellular	1,0,-		
			0.1.0.0		
1	ABCD	4	0100		
	\overline{ABCD}	8	_1000		
2	ĀBĒD	5	0101		
	ĀBCD	6	0110		
	<u>ABCD</u>	_10	_1010_		
3	ABCD	13	1101		

Implication Table (1,0,-)

- Quine-McCluskey Method
 - Tabular method to systematically find all prime implicants
 - $f(A,B,C,D) = \Sigma m(4,5,6,8,9,$ 10,13) + $\Sigma d(0,7,15)$
 - Part 1: Find all prime implicants
 - Step 1: Fill Column 1 with active-set and DC-set minterm indices. Group by number of true variables (# of 1's).

NOTE: DCs are included in this step!

Implication Table				
Column I				
0000				
0100 1000				
0101 0110 1001 1010				
0111 1101				
1111				

Implication Table (cellular)

- Quine-McCluskey Method
 - Tabular method to systematically find all prime implicants
 - $f(A,B,C,D) = \Sigma m(4,5,6,8,9,$ 10,13) + $\Sigma d(0,7,15)$
 - Part 1: Find all prime implicants
 - Step 1: Fill Column 1 with active-set and DC-set minterm indices. Group by number of true variables (# of 1's).

NOTE: DCs are included in this step!

Implication Table				
Column I				
0				
4				
4 8				
5				
5 6 9				
9				
10				
7				
13				
15				

Minimization - First Pass (1,0,-)

• Quine-McCluskey Method

- Tabular method to systematically find all prime implicants
- $f(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + \Sigma$ d(0,7,15)
- Part 1: Find all prime implicants
- Step 2: Apply Adjacency Compare elements of group with N 1's against those with N+1 1's. One bit difference implies adjacent. Eliminate variable and place in next column.

E.g., 0000 vs. 0100 yields 0-00 0000 vs. 1000 yields -000 When used in a combination, mark with a check. If cannot be combined, mark with a star. These are the prime implicants. Repeat until nothing left.

Implication Table					
Column I	Column II				
0000 🗸	0-00 -000				
0100 ✓	-000				
1000 🗸	010-				
	01-0				
0101 ✓	100-				
0110 ✓	10-0				
1001 🗸					
1010 🗸	01-1				
	-101				
0111 🗸	011-				
1101 ✓	1-01				
1111 ✓	-111				
	11-1				

Minimization - First Pass (cellular)

- Quine-McCluskey Method
 - Tabular method to systematically find all prime implicants
 - $f(A,B,C,D) = \Sigma m(4,5,6,8,9,10,13) + \Sigma$ d(0,7,15)
 - Part 1: Find all prime implicants
 - Step 2: Apply Adjacency Compare elements of group with N 1's against those with N+1 1's. 2ⁿ difference implies adjacent. Next col is numbers with diff in parentheses.

E.g., 0 vs. 4 yields 0,4(4)

5 vs. 7 yields 5,7(2)

When used in a combination, mark with a check. If cannot be combined, mark with a star. These are the prime implicants.

Repeat until nothing left.

Implication Table					
Column I	Column II				
0 ✓	0,4(4)				
4 √	0,8(8)				
8 🗸	4,5(1) 4,6(2)				
5 ✓ 6 ✓	8,9(1) 8,10(2)				
9 ✓ 10 ✓	5,7(2)				
7 ✓	5,13(8) 6,7(1)				
13 🗸	9,13(4)				
15 🗸	7,15(8) 13,15(2)				

Minimization - Second Pass (1,0,-)

•	Quine-McCluskey Method	

 Step 2 cont.: Apply Adjacency - Compare elements of group with N 1's against those with N+1 1's. One bit difference implies adjacent. Eliminate variable and place in next column.

E.g., 0000 vs. 0100 yields 0-00

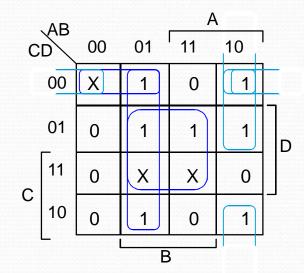
0000 vs. 1000 yields -000

When used in a combination, mark with a check. If cannot be combined, mark with a star. These are the prime implicants.

Repeat until nothing left.

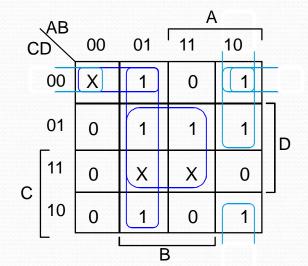
Implication Table				
Column I	Column II	Column III		
0000 ✓	0-00 * -000 *	01 *		
0100 ✓		-1-1 *		
1000 🗸	010- ✓			
	01-0 ✓			
0101 🗸	100- *			
0110 ✓	10-0 *			
1001 🗸				
1010 🗸	01-1 ✓			
	-101 🗸			
0111 ✓	011- ✓			
1101 🗸	1-01 *			
1111 🗸	-111 🗸			
	11-1 🗸			

Minimization - Second Pass (cellular)


- Quine-McCluskey Method
 - Step 2 cont.: Apply Adjacency Compare elements of group with N 1's against those with N+1 1's. 2ⁿ difference implies adjacent. Next column is numbers with differences in parentheses.

E.g., 4,5(1) and 6,7(1) yields 4,5,6,7(3)

When used in a combination, mark with a check. If cannot be combined, mark with a star. These are the prime implicants. Repeat until nothing left.


Implication Table					
Column I	Column II	Column III			
0 🗸	0,4(4) * 0,8(8) *	4,5,6,7(3) *			
4 ✓	0,0(0)	5,7,13,15			
8 🗸	4,5(1) ✓ 4,6(2) ✓	(10) *			
5 ✓	8,9(1) *				
6 ✓	8,10(2) *				
9 √					
10 ✓	5,7(2) ✓				
	5,13(8) ✓				
7 ✓	6,7(1) ✓				
13 ✓	9,13(4) *				
15 ✓	7,15(8)				

Prime Implicants Prime Implicants:

$0 - 00 = \overline{A} \overline{C} \overline{D}$	$-000 = \overline{B} \overline{C} \overline{D}$
$100 - = A \overline{B} \overline{C}$	$10 - 0 = A \overline{B} \overline{D}$
$1 - 01 = A\overline{C}D$	-1 - 1 = B D
$01 = \overline{A} B$	

Prime Implicants (cont.)

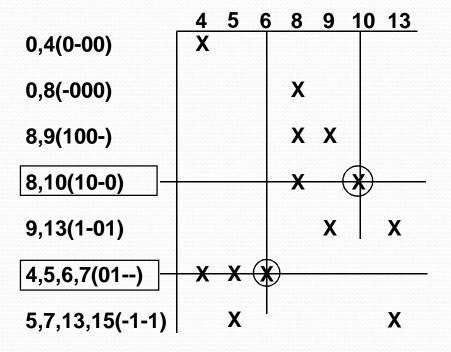
$0 - 00 = \overline{A} \overline{C} \overline{D}$	$-000 = \overline{B} \overline{C} \overline{D}$
$100 - = A \overline{B} \overline{C}$	$10 - 0 = A \overline{B} \overline{D}$
$1 - 01 = A \overline{C} D$	-1 - 1 = B D
$01 = \overline{A} B$	

Stage 2: find smallest set of prime implicants that cover the active-set

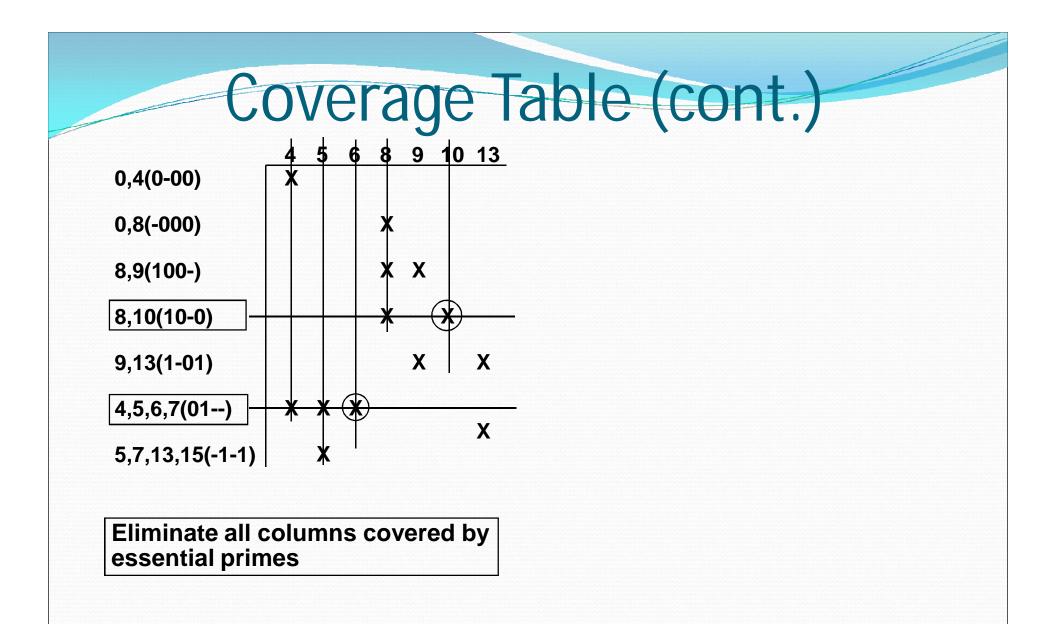
recall that essential prime implicants must be in final expression

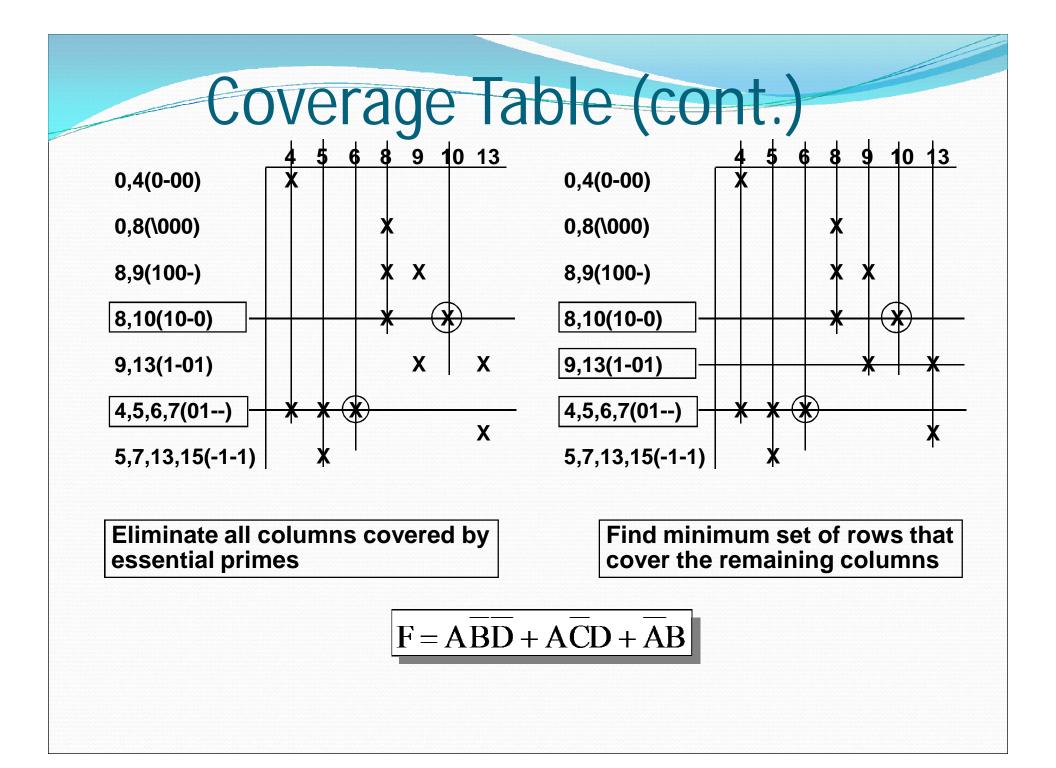
Coverage Chart

	4	5	6	8	9	10	13
0,4(0-00)	Х						
0,8(-000)				X			
8,9(100-)				X	X		
8,10(10-0)				X		X	
9,13(1-01)					X		X
4,5,6,7(01)	X	X	X				
5,7,13,15(-1-1)		х					X


Note: <u>Don't</u> include DCs in coverage table; they don't have covered by the final logic expression!

Rows = Prime Implicants Columns = ON-set elements Place an "X" if ON-set element is covered by the prime implicant.


Coverage Table (cont.)


Coverage Chart

	4	5	6	8	9	10	13
0,4(0-00)	X						
0,8(-000)				x			
8,9(100-)				X	X		
8,10(10-0)				X		x	
9,13(1-01)					X		X
4,5,6,7(01)	Х	X	X				
5,7,13,15(-1-1)		х					x

Rows = prime implicants Columns = ON-set elements Place an "X" if ON-set element is covered by the prime implicant. If column has a single X, than the implicant associated with the row is essential. It must appear in minimum cover

