Binary adder-subtractor, Decimal adder, Binary multiplier LECTURE 2

Dronacharya Group of Institutions

Binary Adder-Subtractor

- A combinational circuit that performs the addition of two bits is called a half adder.
- The truth table for the half adder is listed below:

x	у	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
			18

11-16 4 1 1

Implementation of Half-Adder

Implementation of Half-Adder

Full-Adder

• One that performs the addition of three bits(two significant bits and a previous carry) is a full adder.

Simplified Expressions

Implementation of Half-Adder

S = x'y'z + x'yz' + xy'z' + xyzC = xy + xz + yz

Full adder implemented in SOP

Implementation of Full Adder in Sum of Products

Another implementation

• Full-adder can also implemented with two half adders and one OR gate (Carry Look-Ahead adder).

Implementation of Full Adder with Two Half Adders and an OR Gate

Implementation of Full Adder in Sum of Products

Binary adder

This is also called Ripple Carry Adder ,because of the construction with full adders are connected in cascade.

Subscript i:	3	2	1	0	Contraction of the second s
Input carry	0	1	1	0	C_i
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_i
Output carry	0	0	1	1	C_{i+1}

4-Bit Adder

Carry Propagation

- Fig.4-9 causes a unstable factor on carry bit, and produces a longest propagation delay.
- The signal from C_i to the output carry C_{i+1}, propagates through an AND and OR gates, so, for an n-bit RCA, there are 2n gate levels for the carry to propagate from input to output.

Carry Propagation

- Because the propagation delay will affect the output signals on different time, so the signals are given enough time to get the precise and stable outputs.
- The most widely used technique employs the principle of carry look-ahead to improve the speed of the algorithm.

Boolean functions

 $P_i = A_i \oplus B_i$ steady state value

 $G_i = A_i B_i$ steady state value

Output sum and carry

$$S_i = P_i \oplus C_i$$
$$C_{i+1} = G_i + P_i C_i$$

G_i : carry generate P_i : carry propagate

$$C_{o} = \text{input carry}$$

$$C_{1} = G_{o} + P_{o}C_{o}$$

$$C_{2} = G_{1} + P_{1}C_{1} = G_{1} + P_{1}G_{o} + P_{1}P_{o}C_{o}$$

$$C_{3} = G_{2} + P_{2}C_{2} = G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{o} + P_{2}P_{1}P_{o}C_{o}$$

• C_3 does not have to wait for C_2 and C_1 to propagate.

Logic diagram of carry look-ahead generator

• C_3 is propagated at the same time as C_2 and C_1 .

Logic Diagram of Carry Lookahead Generator

4-bit adder with carry lookahead

• Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

4-Bit Adder with Carry Lookahead

Overflow

- It is worth noting Fig.4-13 that binary numbers in the signedcomplement system are added and subtracted by the same basic addition and subtraction rules as unsigned numbers.
- Overflow is a problem in digital computers because the number of bits that hold the number is finite and a result that contains n+1 bits cannot be accommodated.

Overflow on signed and unsigned

- When two unsigned numbers are added, an overflow is detected from the end carry out of the MSB position.
- When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow.
- An overflow can't occur after an addition if one number is positive and the other is negative.
- An overflow may occur if the two numbers added are both positive or both negative.

Decimal adder

BCD adder can't exceed 9 on each input digit. K is the carry.

Derivation of BCD Adder

Decima	BCD Sum			Binary Sum						
	<i>S</i> ₁	Sz	54	Sa	С	<i>Z</i> ₁	Zz	Z4	Z ₈	к
0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	1	0	0	0	0
2	0	1	0	0	0	0	1	0	0	0
3	1	1	0	0	0	1	1	0	0	0
4	0	0	1	0	0	0	0	1	0	0
5	1	0	1	0	0	1	0	1	0	0
6	0	1	1	0	0	0	1	1	0	0
7	1	1	1	0	0	1	1	1	0	0
8	0	0	0	1	0	0	0	0	1	0
9	1	0	0	1	0	1	0	0	1	0
10	0	0	0	0	1	0	1	0	1	0
11	1	0	0	0	1	1	1	0	1	0
12	0	1	0	0	1	0	0	1	1	0
13	1	1	0	0	1	1	0	1	1	0
14	0	0	1	0	1	0	1	1	1	0
15	1	0	1	0	1	1	1	1	1	0
16	0	1	1	0	1	0	0	0	0	1
17	1	1	1	0	1	1	0	0	0	1
18	0	0	0	1	1	0	1	0	0	1
19	1	0	0	1	1	1	1	0	0	1

Rules of BCD adder

- When the binary sum is greater than 1001, we obtain a nonvalid BCD representation.
- The addition of binary 6(0110) to the binary sum converts it to the correct BCD representation and also produces an output carry as required.
- To distinguish them from binary 1000 and 1001, which also have a 1 in position Z₈, we specify further that either Z₄ or Z₂ must have a 1.

$$\mathbf{C} = \mathbf{K} + \mathbf{Z}_8 \mathbf{Z}_4 + \mathbf{Z}_8 \mathbf{Z}_2$$

Implementation of BCD adder

 A decimal parallel adder that adds n decimal digits needs n BCD adder stages.

 The output carry from one stage must be connected to the input carry of the next higher-order stage.

Block Diagram of a BCD Adder

Binary multiplier

• Usually there are more bits in the partial products and it is necessary to use full adders to produce the sum of the partial products.

4-bit by 3-bit binary multiplier

- For J multiplier bits and K multiplicand bits we need (J X K) AND gates and (J 1)
 K-bit adders to produce a product of J+K bits.
- K=4 and J=3, we need 12 AND gates and two 4-bit adders.

