Magnitude Comparator, Decoders & Encoders Lecture 3

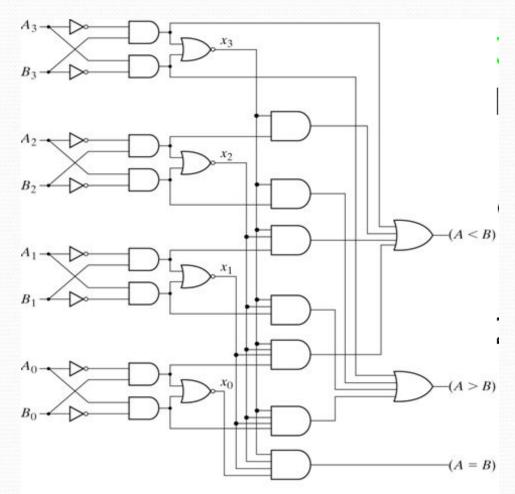
Dronacharya Group of Institutions

Magnitude comparator

• The equality relation of each pair of bits can be expressed logically with an exclusive-NOR function as:

$$A = A_{3}A_{2}A_{1}A_{0}; B = B_{3}B_{2}B_{1}B_{0}$$
$$x_{i}=A_{i}B_{i}+A_{i}'B_{i}' \qquad \text{for } i = 0, 1, 2, 3$$

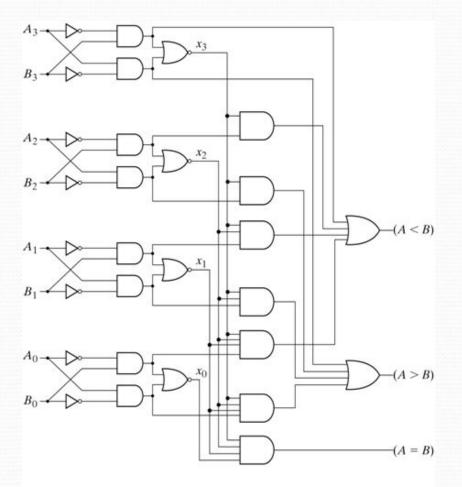
$$(\mathbf{A} = \mathbf{B}) = \mathbf{x}_3 \mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_0$$

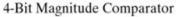


4-Bit Magnitude Comparator

Magnitude comparator

- We inspect the relative magnitudes of pairs of MSB. If equal, we compare the next lower significant pair of digits until a pair of unequal digits is reached.
- If the corresponding digit of A is 1 and that of B is o, we conclude that A>B.
- $(A>B)=A_{3}B'_{3}+x_{3}A_{2}B'_{2}+x_{3}x_{2}A_{1}B'_{1}+x_{3}x_{2}x_{1}$ $A_{0}B'_{0}$ $(A<B)=A'_{3}B_{3}+x_{3}A'_{2}B_{2}+x_{3}x_{2}A'_{1}B_{1}+x_{3}x_{2}x_{1}$ $A'_{0}B_{0}$

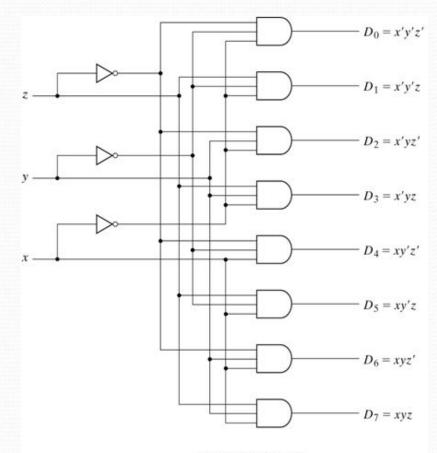




Decoders

- The decoder is called n-to-m-line decoder, where m≤2ⁿ.
- the decoder is also used in conjunction with other code converters such as a BCD-to-seven_segment decoder.
- 3-to-8 line decoder: For each possible input combination, there are seven outputs that are equal to 0 and only one that is equal to 1.

Implementation and truth table

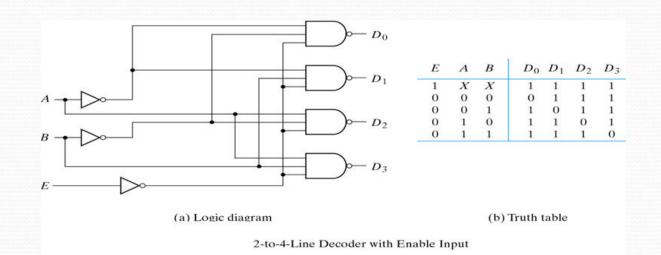


Inputs						Out	outs			
х	У	z	D ₀	D_1	D_2	D_3	D_4	D_5	D_6	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

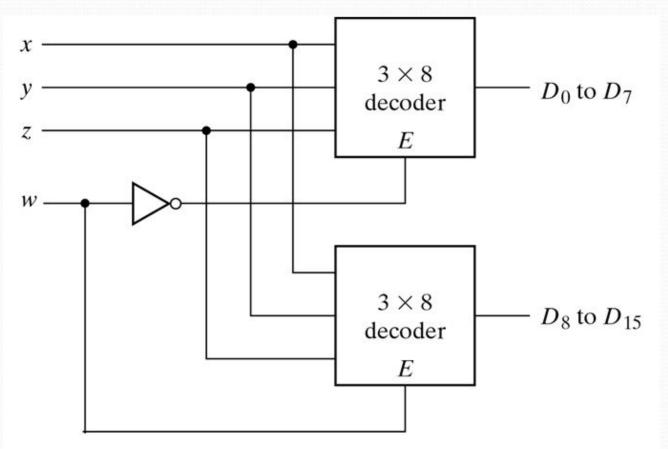
3-to-8-Line Decoder

Decoder with enable input

- Some decoders are constructed with NAND gates, it becomes more economical to generate the decoder minterms in their complemented form.
- As indicated by the truth table , only one output can be equal to 0 at any given time, all other outputs are equal to 1.



3-to-8 decoder with enable implement the 4-to-16 decoder



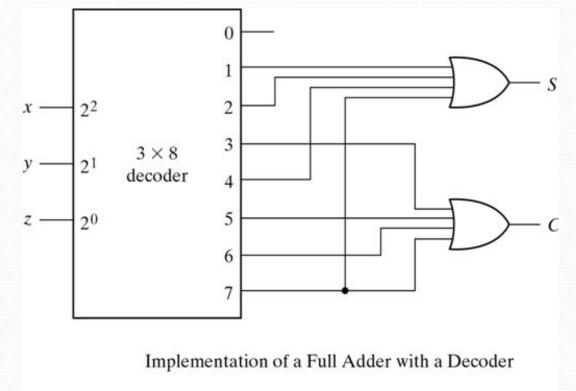
 4×16 Decoder Constructed with Two 3×8 Decoders

Implementation of a Full Adder with a Decoder

• From table 4-4, we obtain the functions for the combinational circuit in sum of minterms:

$$S(x, y, z) = \sum(1, 2, 4, 7)$$

C(x, y, z) = $\sum(3, 5, 6, 7)$



Encoders

- An encoder is the inverse operation of a decoder.
- We can derive the Boolean functions by table 4-7

 $z = D_1 + D_3 + D_5 + D_7$ $y = D_2 + D_3 + D_6 + D_7$ $x = D_4 + D_5 + D_6 + D_7$

Inputs							Outputs			
D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	x	У	z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Priority encoder

- If two inputs are active simultaneously, the output produces an undefined combination. We can establish an input priority to ensure that only one input is encoded.
- Another ambiguity in the octal-to-binary encoder is that an output with all o's is generated when all the inputs are o; the output is the same as when D_o is equal to 1.
- The discrepancy tables on Table 4-7 and Table 4-8 can resolve aforesaid condition by providing one more output to indicate that at least one input is equal to 1.

Priority encoder

V=o→no valid inputs V=1→valid inputs

X's in output columns represent don't-care conditions X's in the input columns are useful for representing a truth table in condensed form. Instead of listing all 16 minterms of four variables.

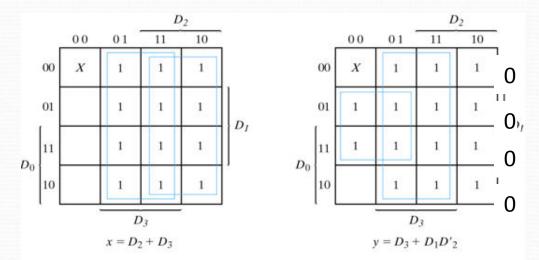
Truth Table of a Priority Encoder

	Inp	uts	Outputs			
Do	D1	D ₂	D ₃	x	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

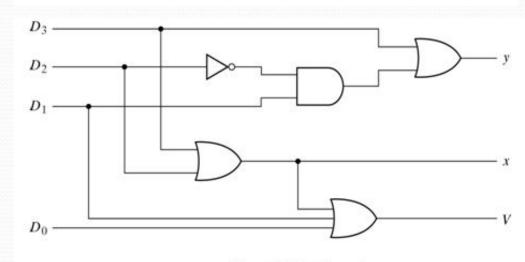
4-input priority encoder

Implementation:

 $x = D_{2} + D_{3}$ $y = D_{3} + D_{1}D'_{2}$ $V = D_{0} + D_{1} + D_{2} + D_{3}$



Maps for a Priority Encoder



⁴⁻Input Priority Encoder