Demultiplexers Lecture 5

Dronacharya Group of Institutions

Demultiplexers

Demultiplexers

- A demultiplexer has
 - N control inputs
 - 1 data input
 - 2^N outputs
- A demultiplexer routes (or connects) the data input to the selected output.
 - The value of the control inputs determines the output that is selected.
- A demultiplexer performs the opposite function of a multiplexer.

Demultiplexers

W = A'.B'.I X = A.B'.I Y = A'.B.IZ = A.B.I

А	В	W	X	Y	Z
0	0	Ι	0	0	0
0	1	0	Ι	0	0
1	0	0	0	Ι	0
1	1	0	0	0	Ι

EXERCISES Designing logic circuits using <u>multiplexers and decoders</u>

Using an <u>*n*-input</u> Multiplexer

• Use an *n*-input multiplexer to realize a logic circuit for a function with *n* minterms.

- $m = 2^n$, where m = # of variables in the function

- Each minterm of the function can be mapped to an input of the multiplexer.
- For each row in the truth table, for the function, where the output is 1, set the corresponding input of the multiplexer to 1.
 - That is, for each minterm in the minterm expansion of the function, set the corresponding input of the multiplexer to 1.
- Set the remaining inputs of the multiplexer to o.

Using an <u>*n*-input</u> Mux

Example:

Using an 8-to-1 multiplexer, design a logic circuit to realize the following Boolean function

 $F(A,B,C) = \Sigma m(2, 3, 5, 6, 7)$

Using an <u>*n*-input</u> Mux

Example:

Using an 8-to-1 multiplexer, design a logic circuit to realize the following Boolean function

 $F(A,B,C) = \Sigma m(1, 2, 4)$

Using an <u>(n / 2)-input</u> Multiplexer

- Use an (*n* / 2)-input multiplexer to realize a logic circuit for a function with *n* minterms.
 - $m = 2^n$, where m = # of variables in the function
- Group the rows of the truth table, for the function, into (n / 2) pairs of rows.
 - Each pair of rows represents a product term of (m 1) variables.
 - Each pair of rows can be mapped to a multiplexer input.
- Determine the logical function of each pair of rows in terms of the mth variable.
 - If the mth variable, for example, is x, then the possible values are x, x', o, and 1.

Using an <u>(n / 2)-input</u> Mux

Example: $F(x,y,z) = \Sigma m(1, 2, 6, 7)$

Using an <u>(n / 2)-input</u> Mux

Example: $F(A,B,C,D) = \Sigma m(1,3,4,11,12-15)$

Using an <u>(n / 4)-input</u> Mux

The design of a logic circuit using an (n / 2)-input multiplexer can be easily extended to the use of an (n / 4)-input multiplexer.

Using an <u>*n*-output</u> Decoder

- Use an *n*-output decoder to realize a logic circuit for a function with *n* minterms.
- Each minterm of the function can be mapped to an output of the decoder.
- For each row in the truth table, for the function, where the output is 1, sum (or "OR") the corresponding outputs of the decoder.
 - That is, for each minterm in the minterm expansion of the function, OR the corresponding outputs of the decoder.
- Leave remaining outputs of the decoder unconnected.

Using an <u>*n*-output</u> Decoder

Example:

Using a 3-to-8 decoder, design a logic circuit to realize the following Boolean function

 $F(A,B,C) = \Sigma m(2, 3, 5, 6, 7)$

Using an <u>*n*-output</u> Decoder

Example:

Using two 2-to-4 decoders, design a logic circuit to realize the following Boolean function

 $F(A,B,C) = \Sigma m(0, 1, 4, 6, 7)$