Synchronous Counters, ripple counter & other counters Lecture 2

Dronacharya Group of Institutions

Introduction: Counters

- Counters are circuits that cycle through a specified number of states.
- Two types of counters:
 - synchronous (parallel) counters
 - asynchronous (ripple) counters
- Ripple counters allow some flip-flop outputs to be used as a source of clock for other flip-flops.
- Synchronous counters apply the same clock to all flip-flops.

- Synchronous (parallel) counters: the flip-flops are clocked at the same time by a common clock pulse.
- We can design these counters using the sequential logic design process (covered in Lecture #12).
- Example: 2-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J,K inputs).

Present state			ext ate	Flip-flop inputs		
A ₁	A_0	A_1^{\dagger}	A_0^+	TA ₁	TA_0	
0	0	0	1	0	1	
0	1	1	0	1	1	
1	0	1	1	0	1	
1	1	0	0	1	1	

 Example: 2-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J,K inputs).

	sent ate		ext ate	-	Flip-flop inputs	
A ₁	A_0	-	A_0^+	<i>TA</i> ₁	TA ₀	
0	0	0	1	0	1	
0	1	1	0	1	1	
1	0	1	1	0	1	
1	1	0	0	1	1	

 Example: 3-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J, K inputs).

	rese state		Next state			Flip-flop inputs		
A_2	A ₁	A_0	A_2^+	A_1^+	A_0^+	TA ₂	<i>TA</i> ₁	TA_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1
A_1 A_1								

Example: 3-bit synchronous binary counter (cont'd).

$$TA_2 = A_1.A_0$$
 $TA_1 = A_0$ $TA_0 = 1$

 Note that in a binary counter, the nth bit (shown underlined) is always complemented whenever

$$011...11 \rightarrow 100...00$$
or $111...11 \rightarrow 000...00$

- Hence, X_n is complemented whenever $X_{n-1}X_{n-2} ... X_1X_0 = 11...11$.
- As a result, if T flip-flops are used, then $TX_n = X_{n-1} \cdot X_{n-2} \cdot \dots \cdot X_1 \cdot X_0$

Example: 4-bit synchronous binary counter.

$$TA_3 = A_2 \cdot A_1 \cdot A_0$$

 $TA_2 = A_1 \cdot A_0$
 $TA_1 = A_0$
 $TA_0 = 1$

Example: Synchronous decade/BCD counter.

Clock pulse	Q ₃	Q_2	Q ₁	Q_0
Initially	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10 (recycle)	0	0	0	0

$$T_0 = 1$$

$$T_1 = Q_3'.Q_0$$

$$T_2 = Q_1.Q_0$$

$$T_3 = Q_2.Q_1.Q_0 + Q_3.Q_0$$

 Example: Synchronous decade/BCD counter (cont'd).

$$T_0 = 1$$

 $T_1 = Q_3'.Q_0$
 $T_2 = Q_1.Q_0$
 $T_3 = Q_2.Q_1.Q_0 + Q_3.Q_0$

Up/Down Synchronous Counters

- Up/down synchronous counter: a bidirectional counter that is capable of counting either up or down.
- An input (control) line *Up/Down* (or simply *Up*) specifies the direction of counting.
 - ❖ $Up/\overline{Down} = 1 \rightarrow Count upward$
 - **❖** $Up/\overline{Down} = 0$ → Count downward

Up/Down Synchronous Counters

 Example: A 3-bit up/down synchronous binary counter.

Clock pulse	Up	Q_2	Q_1	Q_0	Down
0		0	0	0	₹, 🗆
1		0	0	1	≼
2		0	1	0	≼
3	<u> </u>	0	1	1	≼
4		1	0	0	≼
5		1	0	1	—
6		1	1	0	
7		1	1	1	24

$$TQ_0 = 1$$

 $TQ_1 = (Q_0.Up) + (Q_0'.Up')$
 $TQ_2 = (Q_0.Q_1.Up) + (Q_0'.Q_1'.Up')$

Up counter	Down counter
$TQ_0 = 1$	$TQ_0 = 1$
$TQ_1 = Q_0$	$TQ_1 = Q_0$
$TQ_2 = Q_0.Q_1$	$TQ_2 = Q_0'.Q_1'$

Up/Down Synchronous Counters

Example: A 3-bit up/down synchronous binary counter (cont'd).

$$TQ_0 = 1$$

 $TQ_1 = (Q_0.Up) + (Q_0'.Up')$
 $TQ_2 = (Q_0.Q_1.Up) + (Q_0'.Q_1'.Up')$

Designing Synchronous Counters

- Covered in Lecture #12.
- Example: A 3-bit Gray code counter (using JK flip-flops).

	Present state			Next state		Flip-flop inputs					
Q_2	Q_1	Q_0	Q ₂ ⁺	Q_1^+	Q_0^+	JQ ₂	KQ ₂	JQ ₁	KQ ₁	JQ ₀	KQ ₀
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	1	0	X	1	X	X	0
0	1	0	1	1	0	1	X	X	0	0	X
0	1	1	0	1	0	0	X	X	0	X	1
1	0	0	0	0	0	X	1	0	X	0	X
1	0	1	1	0	0	X	0	0	X	X	1
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	1	0	1	X	0	X	1	X	0

Designing Synchronous Counters

3-bit Gray code counter: flip-flop inputs.

 $KQ_0 = Q_2.Q_1' + Q_2'.Q_1$

 $= Q_2 \oplus Q_1$

Designing Synchronous Counters

3-bit Gray code counter: logic diagram.

$$JQ_2 = Q_1.Q_0'$$
 $JQ_1 = Q_2'.Q_0$ $JQ_0 = (Q_2 \oplus Q_1)'$
 $KQ_2 = Q_1'.Q_0'$ $KQ_1 = Q_2.Q_0$ $KQ_0 = Q_2 \oplus Q_1$

Decoding A Counter

- Decoding a counter involves determining which state in the sequence the counter is in.
- Differentiate between active-HIGH and active-LOW decoding.
- Active-HIGH decoding: output HIGH if the counter is in the state concerned.
- Active-LOW decoding: output LOW if the counter is in the state concerned.

Decoding A Counter

Example: MOD-8 ripple counter (active-HIGH decoding).

Decoding A Counter

 Example: To detect that a MOD-8 counter is in state 0 (000) or state 1 (001).

Example: To detect that a MOD-8 counter is in the odd states (states 1, 3, 5 or 7), simply use C.

Ring Counters

- One flip-flop (stage) for each state in the sequence.
- The output of the last stage is connected to the D input of the first stage.
- An n-bit ring counter cycles through n states.
- No decoding gates are required, as there is an output that corresponds to every state the counter is in.

Ring Counters

Example: A 6-bit (MOD-6) ring counter.

Clock	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5
→ 0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	1	0	0	0
3	0	0	0	1	0	0
4	0	0	0	0	1	0
<u>5</u>	0	0	0	0	0	_1_

Johnson Counters

- The complement of the output of the last stage is connected back to the D input of the first stage.
- Also called the twisted-ring counter.
- Require fewer flip-flops than ring counters but more flip-flops than binary counters.
- An *n*-bit Johnson counter cycles through 2*n* states.
- Require more decoding circuitry than ring counter but less than binary counters.

Johnson Counters

Example: A 4-bit (MOD-8) Johnson counter.

(Clock	Q_0	Q_1	Q_2	Q_3
Г	→ 0	0	0	0	0
	1	1	0	0	0
	2	1	1	0	0
	3	1	1	1	0
	4	1	1	1	1
	5	0	1	1	1
	6	0	0	1	1
L	-7	0	0	0	1

Johnson Counters

Decoding logic for a 4-bit Johnson counter.

					,
Clock	A	В	С	D	Decoding
→ 0	0	0	0	0	A'.D'
1	1	0	0	0	A.B'
2	1	1	0	0	B.C'
3	1	1	1	0	C.D'
4	1	1	1	1	A.D
5	0	1	1	1	A'.B
6	0	0	1	1	B'.C
└ 7	0	0	0	1	C'.D

