Feedback and its Applications

CONTENTS

- × Introduction
- × Types of feedback
- × Negative feedback applications
- Positive feedback applications
- Criterion for oscillations
- Classification of oscillator
- × Wein bridge oscillator
- × Crystal oscillator
- Comparison of amplifier and oscillator

TYPES OF NEGATIVE FEEDBACK:

- + Depending on the type of sampling and mixing networks, the feedback amplifiers are classified into four categories:
- × Voltage series feedback
- × Current series feedback
- × Current shunt feedback
- × Voltage shunt feedback

VOLTAGE SERIES FEEDBACK

Therefore,

voltage series feedback = voltage sampling + series mixing

The voltage series feedback is present in the voltage amplifiers.

A transistor amplifier which uses the voltage series feedback is the common collector or emitter follower amplifier: 1. A common collector (or emitter follower) amplifier using BJT.

A common conector (or enfitter follower) amplifier using BJ1.
A common drain (or source follower) amplifier using FET.

CURRENT SERIES FEEDBACK

Therefore

- Current sampling + Series mixing.
- Current series feedback is present in the transconductance amplifiers.

CURRENT SHUNT FEEDBACK:

 This is a combination of current sampling and shunt mixing. The block diagram of a feedback amplifier with current shunt feedback is shown in Fig.

× Current shunt feedback is present in the current amplifiers.

VOLTAGE SHUNT FEEDBACK

• The block diagram of an amplifier with voltage shunt feedback amplifier is shown in Fig.

Voltage Shunt Feedback = Voltage Sampling + Shunt Mixing.

The voltage shunt feedback is present in the transresistance amplifier

ADVANTAGES & DISADVANTAGES Advantages

- × Negative feedback stabilizes the gain of the amplifier.
- × Input resistance increases for certain feedback configurations.
- × Output resistance decreases for certain feedback configurations.
- × Operating point is stabilized.

Disadvantage

× Reduction in gain.

Applications of negative feedback

- **x** In a1most all the electronic amplifiers.
- × In the regulated power supplies.
- × In amplifiers (amplifiers having a large bandwidth)

OSCILLATORS V/S AMPLIFIER

Amplifier	oscillator
1. Negative feedback is	1. Positive feedback is
applied.	applied.
2. It strengthens the	2. It strengthen the input signal
input signal without	causing change in
any change in	waveform.
frequency.	
3. Require an external	3. It just require a dc
wave signal to be	signal.
applied.	