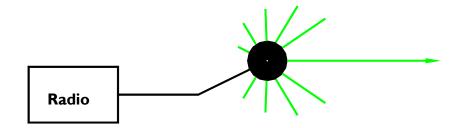

ANTENNA AND WAVE PROPAGATION


Parabolic Reflectors

An Antenna is:

An effective interface between the radio and free space:

For Terrestrial Communications, antennas must be directional:

Terrestrial Microwave Antennas for Point-To-Point Communication

- Terrestrial antennas generate a beam of RF signal to communicate between two locations.
- Point-To-Point communication depends upon a clear line of sight between two antennas.
- Obstructions, such as buildings, trees or terrain interfere with the signal.
- Depending upon the location, usage and frequency, different types can be utilized.
- We will address the basic characteristics of these various types...

Basic Parabolic Antenna Types

Standard Parabolic Antenna

Shielded (Radomes)
Antenna

Focal Plane Antenna

GRIDPAK® Antenna

Standard Parabolic Antenna

- Basic Antenna
- Comprised of
 - Reflector
 - Feed Assembly
 - Mount

Shielded Antenna

- Absorber-Lined Shield
- Improved Feed System
- Protection Against Ice, Snow and Dirt
- Better against the wind

Focal Plane Antenna

- Deeper Reflector
- Edge Geometry
- Slightly Lower Gain

GRIDPAK® Antenna

- Grid Reflector
- Low Wind load
- Below 2.7GHz

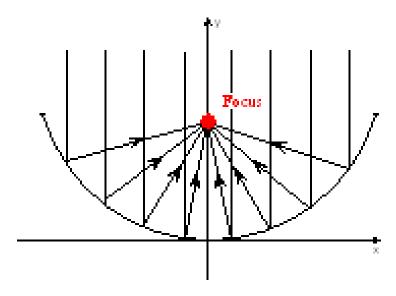
Antenna Efficiency

Well-designed antennas have efficiency ratings of 45 - 65%

Efficiency Factor Affected By:

- Signal Strength,
- Blockage & Obstructions
- Reflector Surface

Efficiency can never be 100%


Calculating the Focal Point

- In order to determine the optimal location for the antenna feed, or receiver, you must calculate the focal point.
- Using the following formula:
 - $F = D^2 / 16d$
 - Where
 - F = focal point
 - D = Diameter of the dish
 - d = depth of dish

Focal Point

The point at which the RF signals meet after reflecting off of the parabolic curve of the antenna.

Parabola Shape

Calculating the Focal Point

- If you have a Parabolic Dish antenna that is 12" in diameter and 3" deep where would the focal point be located?
- Use the formula: F= D2 / 16d
 - 12" squared = 144",
 - 144" divided by (16 x 3") or 48"
 - 144/48"=3"
 - The focal point is 3".

Calculation Worksheet

- Go to the "Handouts" tab on the classroom website dashboard,
- Open the "Parabolic Dish Calculations Worksheet",
- Work the problems on the worksheet and upload the completed worksheet to the classroom website.