ANTENNA AND WAVE PROPAGATION

0

Terrestrial Microwave Antennas for Point-To-Point Communication

- Terrestrial microwave antennas generate a beam of RF signal to communicate between two locations.
- Point-To-Point communication depends upon a clear line of sight between two microwave antennas.
- Obstructions, such as buildings, trees or terrain interfere with the signal.
- Depending upon the location, usage and frequency, different types can be utilized.
- We will address the basic characteristics of these various types...

Electrical Performance Parameters

Cross-Polar Discrimination (XPD)

Interport Isolation (IPI)

Return Loss (VSWR)

Parabolic Antenna Directive Gain

$G_a(dBi) = 10 \log_{10} \eta [4 \pi A_a / \lambda^2]$

Where:

- G_a = Antenna Directive Gain (Catalog spec)
- η = Aperture Efficiency (50-55%)
- A_a = Antenna Aperture Area
- λ = Wavelength (speed of light / frequency)

I Parabolic na Gain in dBi

Antenna Diameter

	2 ft	4 ft	6 ft	8 ft	10 ft	12 ft	15 ft
	(0.6m)	(1.2m)	(1.8m)	(2.4m)	(3.0m)	(3.7m)	(4.5m)
2 GHz	19.5	25.5	29.1	31.6	33.5	35.1	37
4 GHz	25.5	31.6	35.1	37.6	39.5	41.1	43.1
6 GHz	29.1	35.1	38.6	41.1	43.1	44.6	46.6
8 GHz	31.6	37.6	41.1	43.6	45.5	47.1	49.1
11 GHz	34.3	40.4	43.9	46.4	48.3	49.9	51.8
15 GHz	37	43.1	46.6	49.1	51	52.6	NA
18 GHz	38.6	44.6	48.2	50.7	NA	NA	NA
22 GHz	40.4	46.4	49.9	NA	NA	NA	NA
38 GHz	45.1	51.1	NA	NA	NA	NA	NA

Frequency

Radiation Pattern about Bore sight

Cut Through Radiation Pattern at Boresight

Front to Back Ratio

- Ratio of the signal level at beam peak to that directed behind the antenna
- Considered in intra-system interference calculation (hop overreach)
- Expressed in dB

Co-Polarization and Cross-Polarization

Co-Polarization

Where Transmit & Receive Antennas have the Same Polarization Either Horizontal or Vertical (HH or VV) In your System, The Wanted Signal

Cross-Polarization

- Where Transmit & Receive Antennas have Different Polarizations
- Either HV or VH.
- In your System, The Unwanted Signal

Azimuth Angle

Inter-port Isolation (IPI)

- Leakage of Signal Between
 Antenna Ports
- Internal Noise
- Expressed in dB

Voltage Standing Wave Ratio (VSWR)

Incident Signal
Reflected Signal

VSWR = <u>I + (Reflection Coefficient)</u> I - (Reflection Coefficient)

- VSWR : 1.30
- VSWR : 1.20
- VSWR:1.10
- VSWR : 1.08
- VSWR : 1.06

Reflection Coefficient : 13% (0.13) Reflection Coefficient : 9.1% (0.091) Reflection Coefficient : 4.7% (0.047) Reflection Coefficient : 3.8% (0.038)

Reflection Coefficient : 2.9% (0.029)

Return Loss

The Amount of Energy Lost due to Reflected (Returned) Signal

RL = -20 x log (Reflection Coefficient)

RL:17.8dB	Reflection : 3% (0. 3)
RL:20.8dB	Reflection : 9.1% (0.091)
RL:26.7dB	Reflection : 4.7% (0.047)
RL:28.4dB	Reflection : 3.8% (0.038)
RL:30.7dB	Reflection : 2.9% (0.029)

- **VSWR**: 1.30
- **VSWR**: 1.20
- **VSWR**: 1.10
- **VSWR** : 1.08
- **VSWR** : 1.06

Basic Antenna Types

Standard Parabolic Antenna

Shielded Antenna

Focal Plane Antenna

GRIDPAK® Antenna

GRIDPAK® Antenna

- Grid Reflector
- Low Wind load
- Single Polarized
- Below 2.7GHz
- Shipped in Flat, Lightweight Package

Standard Parabolic Antenna

- Basic Antenna
- Comprised of
 - Reflector
 - Feed Assembly
 - Mount

Focal Plane Antenna

- Deeper Reflector
- Edge Geometry
- Improved F/B Ratio
- Slightly Lower Gain

Shielded Antenna

- Absorber-Lined Shield
- Improved Feed System
- Planar Radome
- Improved RPE

Antenna Efficiency

Well-designed antennas have efficiency ratings of 45 - 65%

Efficiency Factor Affected By :

- Feed Illumination
- Aperture Blockage
- Reflector Surface Tolerance

Efficiency can never be 100%

Antenna f/D Ratio

Standard & Shielded Antennas

Focal Plane Antennas

Spillover

Diffraction

Front to Back Ratio

Parabolic Reflector Beamwidth

Diameter

Frequency

	0.3 m	0.6 m	1.2 m	1.8 m	2.4 m	3 m	3.7 m	4.5 m
2 GHz	35	17.5	8.75	5.83	4.38	3.5	2.84	2.33
6 GHz	11.67	5.83	2.92	1.94	1.46	1.17	0.95	0.78
8 GHz	8.75	4.38	2.19	1.46	1	0.88	0.71	0.58
11 GHz	6.36	3.18	1.59	1	0.8	0.64	0.52	0.42
14 GHz	5	2.5	1.25	0.83	0.63	0.5	0.41	0.33
18 GHz	3.89	1.94	0.97	0.65	0.49	0.39	0.32	0.26
23 GHz	3	1.52	0.76	0.51	0.38	0.3	0.25	0.2
38 GHz	1.84	0.92	0.46	0.31	0.23	0.18	0.15	0.12

Beamwidth in Degrees

Radiation Pattern Envelope

 Reduce Windloading on Tower

 Protection Against Ice, Snow and Dirt

Other Antenna Options

High XPD antennas Dual beam antennas Dual band antennas Low profile antennas Integrated antennas