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(Lecture-8)

Solutions and Summary
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Solutions to the State Equations - Preliminaries

e Recall our state equations:
X(t) = Ax(t) + Bv(t)
y(t) = Cx(t) + Dv(t)
e To solve these equations, we will need a few mathematical tools. First:
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where I is an NxN ideritity matrix. A¥ is simply AxAx...A.
e For any real numbers t and A:

eA(t+/1) — eAteA}t

e Further, setting 4 = -t:
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e Next:
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« We can use these results to show that the solution to
is: x(t) =e*x(0), t>0

+... | = Ae™

x(t) = AX(t)
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Solutions to the Forced Equation

o If: x(t)=e"x(0), t>0
d d At _E At _ At _
a[X(t)]:a[e x(o)]_dt % K(0) = Ae"x(0) = Ax(t)

o ¢“isreferred to as the state-transition matrix.

e We can apply these results to the state equations:
X(t) = Ax(t) + Bv(t)
X(t) - Ax(t) = Bv(t)
e M [x(t) - AX(t)] = e ™Bv(t)

e Note that:

%[e““x(t)]: e X(t) + {%e‘“}x(t) = Mx(t) - Ae Mx(t) = M [x(t) - AX(t)]

%[e““x(t)]: e Buv(t) o
Generalization of our

 Integrating both sides: .
convolution integral

e x(t) =x(0) +jeA‘"Bv(/1)d/1

X(t) =¢"x(0)+ [e " Bu(4)d2, t=0
2 3
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Solution to the Output Equation
e Recall:

y(t) = Cx(t) + Dv(t) = C| e*'x(0) +j[eA(”)Bv(/1)dﬂ +Dv(t), t>0

= Ce™x(0) + j Ce*“*By(1)dA +Dv(t), t>0
0
e Using the definition of the unit impulse:

y(t) = Ce*'x(0) + j [ce*By(4) + Dot - Av(A)lA, t=0

YZi(t) g

Vas(t)
e Recall our convolution integral for a single-input single-output system:

Y,o(t)=h(t)*v(t) = j h(t—A)Vv(A)dA, t>0

 Equating terms:
t t
[lce#By(2) + DSt - AN(A) 2 = [t - 2)v(4)da
0 0
h(t) = CeAB+D 5(,[) The impulse _response can be
computed directly from the
coefficient matrices.
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Solution via the Laplace Transform

e Recall our state equations:
X(t) = Ax(t) + Bv(t)
y(t) = Cx(t) + Dv(t)
e Using the Laplace transform on the first equation:
sX(s) —x(0) = AX(s) +BV(s)
(sl = A)X(s) = x(0) + BV(s)
X(s) = (sl = A)'x(0) + (sl —A)'BV(s)

e Comparing this to:

t
X(t) = e”x(0) + j e AIBy(1)dA, t>0

reveals that:
e = £ s1-A)?
e Continuing with the output equation:
y(t) = Cx(t) + Dv(t)

Y (s) =CX(s)+DV(s) The transfer function can
(el AV AV be computed directly
— (s1-A)*x(0)+[c(s1 - Ay B+ D]V(s) from the system
e For zero initial conditions: LELEITEIEE:

Y(s)=H(s)X(s) where H(s)=|C(sI-A)'B+D|
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Summary
» Introduced the concept of a state variable.

» Described a linear system in terms of the general state equation.

 Demonstrated a process for deriving the state equations from a differential equation
with a simple forcing function.

e Generalized this to an Nth-order differential equation with a more complex forcing

function.

Demonstrated these techniques on a 15t-order (RC) and 2™4-order (RLC) circuit.

Observation: We have now encapsulated all passive circuit analysis (RLCs) into a single
matrix equation. In fact, we now have a unified representation for all linear time-

invariant systems.

Introduced the time-domain and Laplace transform-based solutions to the state

equations.

Even nonlinear (and non-time-invariant) systems can be modeled using these
techniques. However, the resulting differential equations are more complex.
Fortunately, we have powerful numerical modeling techniques to handle such

problems.



