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(Lecture-8) 

 

Solutions and Summary 
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• Recall our state equations: 
 
 

• To solve these equations, we will need a few mathematical tools. First: 
 
 

 where I is an NxN identity matrix. Ak is simply AxAx…A. 
• For any real numbers t and : 

 
 

• Further, setting  = -t: 
 

• Next: 
 
 
 

• We can use these results to show that the solution to 
is: 

Solutions to the State Equations – Preliminaries 
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• If: 
 
 

•        is referred to as the state-transition matrix. 
• We can apply these results to the state equations: 

 
 
 
 

• Note that: 
 
 
 
 

• Integrating both sides: 

Solutions to the Forced Equation 
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Generalization of our 
convolution integral 
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• Recall: 
 
 
 
 

• Using the definition of the unit impulse: 
 
 
 

• Recall our convolution integral for a single-input single-output system: 
 
 
 

• Equating terms: 
 

Solution to the Output Equation 
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The impulse response can be 
computed directly from the 

coefficient matrices. 
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Solution via the Laplace Transform 

• Recall our state equations: 
 
 
 

• Using the Laplace transform on the first equation: 
 
 
 
 

• Comparing this to: 
 
 

 reveals that: 
 
• Continuing with the output equation: 

 
 
 
 

• For zero initial conditions: 
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The transfer function can 
be computed directly 

from the system 
parameters. 
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Summary 
• Introduced the concept of a state variable. 

• Described a linear system in terms of the general state equation. 

• Demonstrated a process for deriving the state equations from a differential equation 

with a simple forcing function. 

• Generalized this to an Nth-order differential equation with a more complex forcing 

function. 

• Demonstrated these techniques on a 1st-order (RC) and 2nd-order (RLC) circuit. 

• Observation: We have now encapsulated all passive circuit analysis (RLCs) into a single 

matrix equation. In fact, we now have a unified representation for all linear time-

invariant systems. 

• Introduced the time-domain and Laplace transform-based solutions to the state 

equations. 

• Even nonlinear (and non-time-invariant) systems can be modeled using these 

techniques. However, the resulting differential equations are more complex. 

Fortunately, we have powerful numerical modeling techniques to handle such 

problems. 


