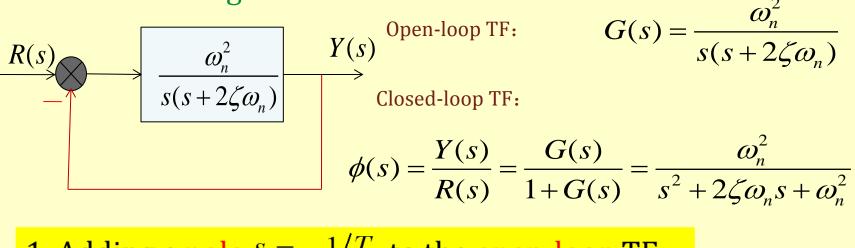
EIC-501

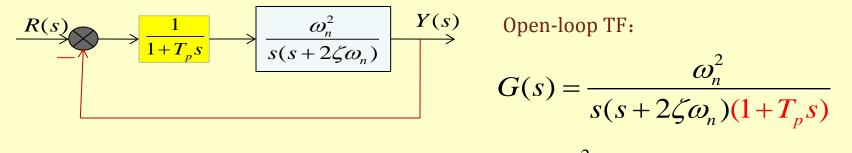
UNIT-3 (Lecture-7)

Effects of Adding Poles and Zeros to Transfer Functions

Effects of Adding Poles



1. Adding a pole $s = -1/T_p$ to the open-loop TF

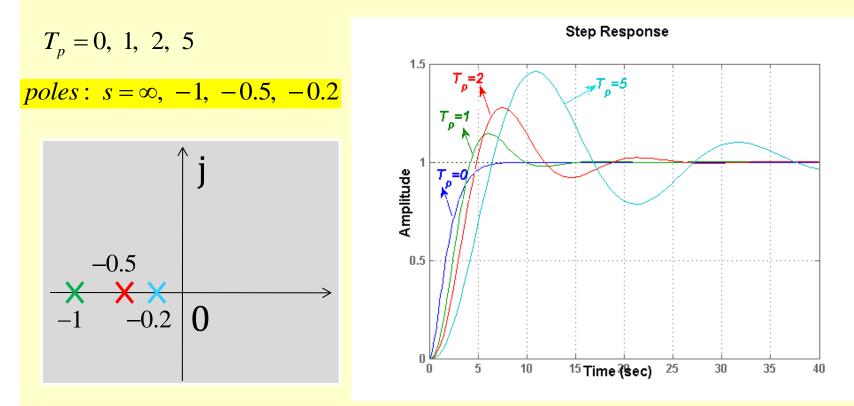


Closed-loop TF:

$$\phi(s) = \frac{\omega_n^2}{T_p s^3 + (1 + 2\zeta \omega_n T_p) s^2 + 2\zeta \omega_n s + \omega_n^2}$$

1. Adding a pole at $s = -1/T_p$ to the open-loop TF

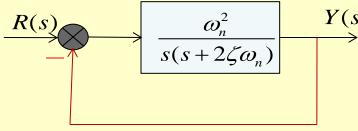
How does it affect closed-loop system step-response performance?



- -- Increasing the maximum overshoot of the closed-loop system;
- -- Increasing the rise time of the closed-loop system.

EIC-501

Effects of Adding Poles



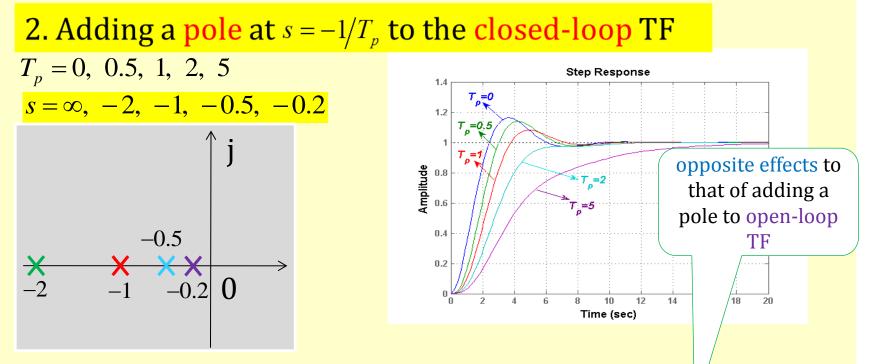
$$Y(s) \quad \text{Open-loop TF:} \quad G(s) = \frac{\omega_n^2}{s(s+2\zeta\omega_n)}$$

$$Closed-loop TF:$$

$$\phi(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1+G(s)} = \frac{\omega_n^2}{s^2+2\zeta\omega_n s + \omega_n^2}$$

2. Adding a pole at $s = -1/T_p$ to the closed-loop TF

Closed-loop TF: $\phi(s) = \frac{\omega_n^2}{(s^2 + 2\zeta\omega_n s + \omega_n^2)(1 + T_p s)}$ $= \frac{\omega_n^2}{T_p s^3 + (1 + 2\zeta\omega_n T_p)s^2 + (2\zeta\omega_n + \omega_n^2 T_p)s + \omega_n^2}$



EIC-501

As the pole at $s = -1/T_p$ is moved toward the origin in the s-plane

- -- the maximum overshoot of the closed-loop system decreases;
- -- the rise time of the closed-loop system increases.
- 1. Adding a pole to the closed-loop system has the effect as increasing the damping ratio;
- An originally underdamped system can be made into overdamped by adding a closed-loop pole.

R(s)

Effects of Adding Zeros

 $\frac{\omega_n^2}{s(s+2\zeta\omega_n)} \xrightarrow{Y(s)} \text{Open-loop TF:} \quad G(s) = \frac{\omega_n^2}{s(s+2\zeta\omega_n)}$ $\frac{\varphi(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1+G(s)} = \frac{\omega_n^2}{s^2+2\zeta\omega_n s + \omega_n^2}$

1. Adding a zero at $s = -1/T_z$ the closed-loop TF

Closed-loop TF:

$$\phi(s) = \frac{Y(s)}{R(s)} = \frac{\omega_n^2 (1 + T_z s)}{s^2 + 2\zeta \omega_n s + \omega_n^2} = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} + \frac{\omega_n^2 T_z s}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

1. Adding a zero at $s = -1/T_z$ to the closed-loop TF

Closed-loop TF:

$$\phi(s) = \frac{Y(s)}{R(s)} = \frac{\omega_n^2 (1 + T_z s)}{s^2 + 2\zeta \omega_n s + \omega_n^2} = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} + \frac{\omega_n^2 T_z s}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

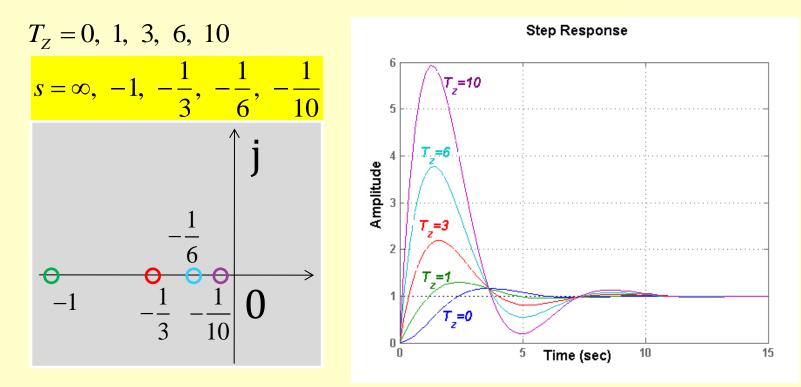
For a unit-step input 1(t), $R(s) = \frac{1}{s}$

The step response of the closed-loop system

$$Y(s) = \phi(s)R(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \frac{1}{s} + T_z s \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \frac{1}{s}$$
$$y(t) = L^{-1}[Y(s)] = y_1(t) + T_z \frac{dy_1(t)}{dt}$$

7

1. Adding a zero at $s = -1/T_z$ to the closed-loop TF a) Its effects on an underdamped ($0 < \zeta < 1$)system



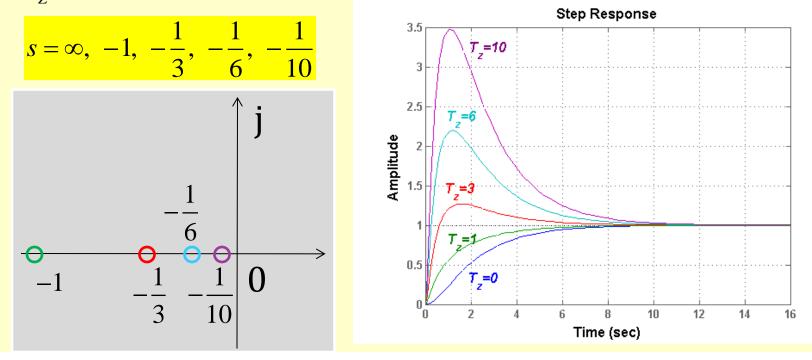
As the zero at $s = -1/T_z$ is moved toward the origin in the s-plane

- -- the maximum overshoot of the closed-loop system increases;
- -- the rise time of the closed-loop system decreases.
- The additional zero has the effect as reducing the damping ratio

EIC-501

1. Adding a zero at $s = -1/T_z$ to the closed-loop TF

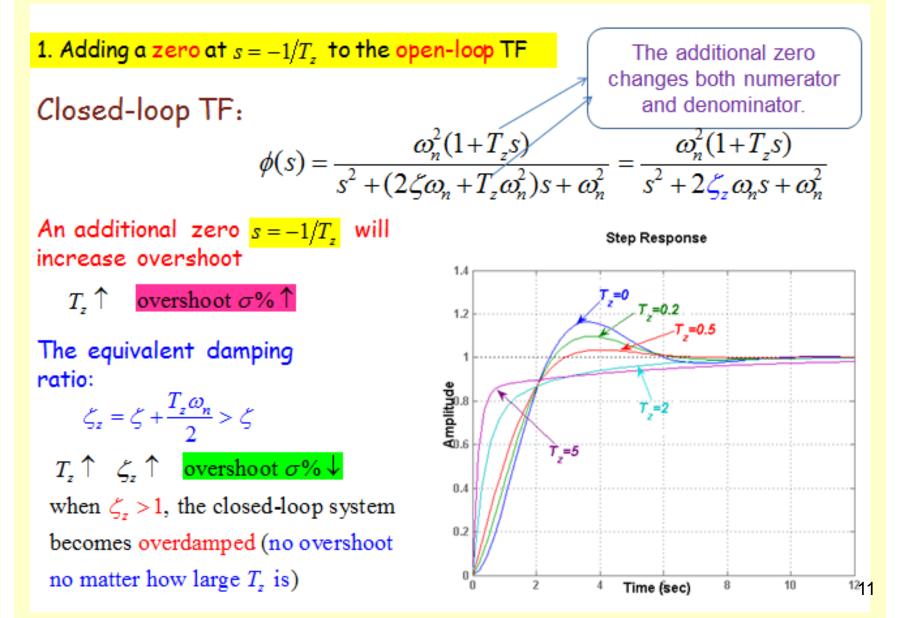
b) Its effects on an overdamped ($\zeta > 1$)system $T_{z} = 0, 1, 3, 6, 10$



Adding a zero to an overdamped system can change it into an underdamped system by putting the zero at a proper position.

Effects of Adding Zeros

$$\begin{array}{c}
 \hline & & & \\
\hline \\ & & & \\
\hline \\ \hline & & & \\
\hline \\ \hline & & & \\
\hline \\ \hline & & \\
\hline \\ \hline \\ \hline$$



Dominant Poles of Transfer Function

Dominant poles: those poses that have a dominant effect on the transient response.

By identifying dominant poles, high-order systems can be approximated by lower ones as the transient response is concerned.

e.g.

$$Y(s) = \frac{1}{(s+p_1)(s+p_2)(s+p_3)} = \frac{c_1}{s+p_1} + \frac{c_2}{s+p_3} + \frac{c_3}{s+p_3}$$

$$y(t) = c_1 e^{-p_1 t} + c_2 e^{-p_2 t} + c_3 e^{-p_3 t}$$
poles: $-p_1, -p_2, -p_3$

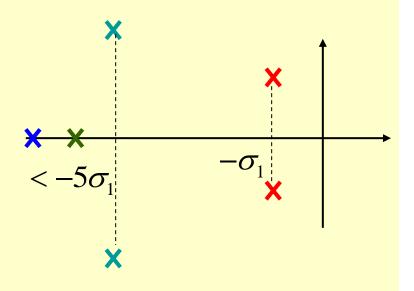
If $p_1 > p_2 > p_3$, $c_1 e^{-p_1 t}$ decays fastest, $c_3 e^{-p_3 t}$ decays slowest.

Position of Poles in the left-half s-plane Their effects on transient response

close to the imaginary axis far away from the imaginary axis decaying relatively slowly decaying fast

Dominant Poles of Transfer Function

If the ratio of real parts **exceed 5 and no zeros nearby**, the closedloop poles nearest the imaginary-axis will dominate in the transient response behavior.



The dominant poles can be a real pole, but a pair of complex conjugate poles are more preferable in control engineering (why?).

In order to apply second-order system in approximating the dynamic performance of higherorder system