EIC-501

UNIT-3 (Lecture-8)

S-Plane

S-Plane

• Natural Undamped Frequency.

 Distance from the origin of s-plane to pole is natural undamped frequency in rad/sec.

S-Plane

- Let us draw a circle of radius 3 in s-plane.
- If a pole is located anywhere on the circumference of the circle the natural undamped frequency would be *3 rad/sec*.

EIC-501

S-Plane

• Therefore the s-plane is divided into Constant Natural Undamped Frequency (ω_n) Circles.

S-Plane

• Damping ratio.

 Cosine of the angle between vector connecting origin and pole and -ve real axis yields damping ratio.

 $\zeta = \cos \theta$

S-Plane

• For Underdamped system $0^{\circ} < \theta < 90^{\circ}$ therefore,

S-Plane

• For Undamped system $\theta = 90^{\circ}$ therefore, $\zeta = 0$

S-Plane

• For overdamped and critically damped systems therefore, $\zeta \ge 0$

S-Plane

• Draw a vector connecting origin of s-plane and some point P.

S-Plane

• Determine the natural frequency and damping ratio of the poles from the following pz-map.

11

Example-3

- Determine the natural frequency and damping ratio of the poles from the given pz-map.
- Also determine the transfer function of the system and state whether system is underdamped, overdamped, undamped or critically damped.

Example-4

- The natural frequency of closed loop poles of 2nd order system is 2 rad/sec and damping ratio is 0.5.
- Determine the location of closed loop poles so that the damping ratio remains same but the natural undamped frequency is doubled.

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{4}{s^2 + 2s + 4}$$

Example-4

• Determine the location of closed loop poles so that the damping ratio remains same but the natural undamped frequency is doubled.

S-Plane

