UNIT-1 Lecture-6

Device parameters; DC Analysis of 741

THE DEVICE PARAMETERS

For the standard *npn* and *pnp* transistors, the following parameters will be used:

pnp: $I_s = 10^{-14} A$, $\beta = 50$, $V_A = 50 V$

- In 741 circuit the nonstandard devices are Q_{13} , Q_{14} and Q_{20} .
- For transistor Q_{13} , $I_{SA} = 0.25 \times 10^{-14} \text{A}$ $I_{SB} = 0.75 \times 10^{-14} \text{A}$,
- Transistors Q_{14} and Q_{20} have an area three time that of a standard device.

DC ANALYSIS OF 741

For the dc analysis of an op-amp circuit, the Input terminals are grounded.

- This should result in zero dc voltage at the output.
- However, because the op amp has very large gain, the output voltage is close to either $+V_{CC}$ or $-V_{EE}$.
- To overcome this problem In the dc analysis, it will be assumed that the op amp is connected in a negative feedback loop that stabilizes the output dc voltage to zero volts.

REFERENCE BIAS CURRENT

The reference Bias current I_{REF} can be obtained as: $I_{\text{REF}} = VCC - VEB12 - VBE11 - (-VEE)/R_5$

INPUT-STAGE BIAS

Transistor Q_{11} is biased by I_{REF} , and the voltage developed across I_{REF} is used to bias Q_{10} which has a series emitter resistance R_4 .

Now we can determine dc current in each of the inputstage transistors.

Figure: The dc analysis of the 741 input stage.

INPUT BIAS AND OFFSET CURRENTS

- Because of possible mismatches in the β values of Q_1 and Q_2 the input base currents will not be equal.
- In this case, input offset current is defined as, $I_B = I_{B1} - I_{B2}$