UNIT-2 Lecture-2

(ideal and non ideal) based Circuits

Operational Amplifiers

<u>Application</u>: As an application of the previous model, consider the following configuration. Find V_0 as a function of V_{in} and the resistors R_1 and R_2 .

Op amp functional circuit.

Operational Amplifiers

In terms of the circuit model we have the following:

Total op amp schematic for voltage gain configuration.

Operational Amplifiers

For most all operational amplifiers, R_i is 1 meg Ω or larger and R_o is around 50 Ω or less. The open-loop gain, A, is greater than 100,000.

Ideal Op Amp:

The following assumptions are made for the ideal op amp.

1. Infinite open-loop gain; $A \cong \infty$

2. Zero output ohms; $R_o = 0$

3. Infinite input ohms; $R_i = \infty$

(b) V_i is negligibly small; $V_1 = V_2$.

Ideal Op Amp:

Find V_o in terms of V_{in} for the following configuration.

Gain amplifier op amp set-up.

Writing a nodal equation at (a) gives;

$$\frac{(V_{in}+V_i)}{R_1} = -\frac{(V_i+V_o)}{R_2}$$

With V_i = 0 we have;
$$V_0 = \frac{-R_2}{R_1} V_{in}$$

With $R_2 = 4 \text{ k}\Omega$ and $R_1 = 1 \text{ k}\Omega$, we have

$$V_o = -4V_{in}$$
 Earlier $\longrightarrow V_o = -3.99V_{in}$
we got

At this point in circuits we are not able to appreciate the utility . We will revisit this at a later point in circuits but for now we point out that judicious selections of $Z_{\rm fb}(s)$ and $Z_{\rm in}(s)$ leads to important applications in

- Analog Filters
- Analog Compensators in Control Systems
- Application in Communications