
UNIT-2 Lecture-3

V-I and I-V converters, generalized Impedance converter

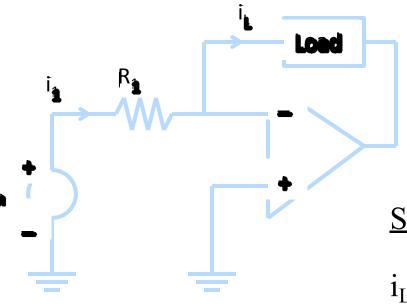
VCIS (Transconductance Amplifier) Summary

Voltage to Current Converter

$$i_L = i_1 = v_1 / R_1$$

$$\mathbf{v}_1 = \mathbf{v}_{in}$$

The transconductance, $g_m = i_o/v_{in} = 1/R_1$


Therefore, $i_L = i_1 = v_{in}/R_1 = g_m v_{in}$

The maximum load resistance is determined by:

$$R_{L(max)} = v_{o(max)}/i_L$$

VCIS (Transconductance Amplifier)

Voltage to Current Converter Example

Given:
$$v_{in} = 2 \text{ V}$$
, $R_1 = 2 \text{ k}\Omega$

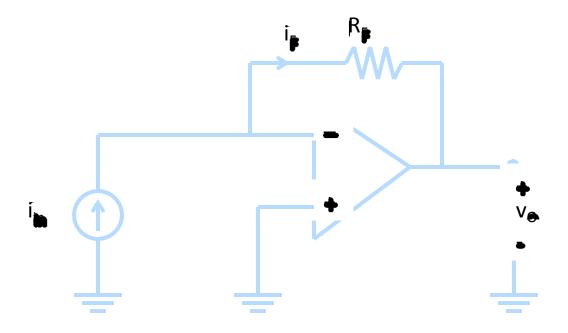
$$v_{o(max)} = 10 V$$

Find: i_L , g_m and $R_{L(max)}$

Solution:

$$i_L = i_1 = v_{in}/R_1 = 2 / 2000 = 1 \text{ mA}$$

Note:


- If $R_L > R_{L(max)}$ the op amp will saturate
- The output current, i_L is independent of the load resistance.

$$g_m = i_o/v_{in} = 1/R_1 = 1 / 2000 = 0.5 \text{ mS}$$

$$R_{L(max)} = v_{o(max)}/i_L = 10 \text{ V} / 1 \text{ mA}$$

= 10 k Q

VCIS (Transresistance Amplifier) Summary

Current to Voltage Converter

General Equations:

$$i_F = i_{in}$$

$$v_o = -i_F R_F$$

$$r_m = v_o / i_{in} = R_F$$

VCIS (Transresistance Amplifier) Summary

Current to Voltage Converter

- Transresistance Amplifiers are used for low-power applications to produce an output voltage proportional to the input current.
- Photodiodes and Phototransistors, which are used in the production of solar power are commonly modeled as current sources.
- Current to Voltage Converters can be used to convert these current sources to more commonly used voltage sources.