UNIT-3 Lecture-3

AND, OR, NAND and NOR Gates

Complementary CMOS Logic Style

• PUP is the <u>DUAL</u> of PDN (can be shown using DeMorgan's Theorem's)

$$\overline{\overline{A} + B} = \overline{\overline{A}}\overline{\overline{B}}$$
$$\overline{\overline{A}}\overline{\overline{B}} = \overline{\overline{A}} + \overline{\overline{B}}$$

• The complementary gate is inverting

AND = NAND + INV

Example Gate: NAND

PDN: G = A B \Rightarrow Conduction to GND PUN: F = $\overline{A} + \overline{B} = \overline{AB} \Rightarrow$ Conduction to V_{DD} $\overline{G(In_1, In_2, In_3, ...)} \equiv F(\overline{In_1}, \overline{In_2}, \overline{In_3}, ...)$

Example Gate: NOR

Complex CMOS Gate

Constructing a Complex Gate

(a) pull-down network

(b) Deriving the pull-up network hierarchically by identifying sub-nets

