UNIT-3 Lecture-4

Latches and Flip flops: The Latch

Introduction

- What makes a circuit fast?
 - -I = C dV/dt $-> t_{pd} \propto (C/I) DV$
 - low capacitance
 - high current
 - small swing
- Logical effort is proportional to C/I
- pMOS are the enemy!
 - High capacitance for a given current
- Can we take the pMOS capacitance off the input?
- Various circuit families try to do this...

Pseudo-nMOS

- In the old days, nMOS processes had no pMOS
 - Instead, use pull-up transistor that is always ON
- In CMOS, use a pMOS that is always ON
 - Ratio issue
 - Make pMOS about ¹/₄ effective strength of pulldown network

Dynamic Logic

- *Dynamic* gates uses a clocked pMOS pullup
- Two modes: *precharge* and *evaluate*

Pass Transistor Circuits

- Use pass transistors like switches to do logic
- Inputs drive diffusion terminals as well as gates
- CMOS + Transmission Gates:
 - 2-input multiplexer
 - Gates should be restoring

Sequencing

- Combinational logic
 - output depends on current inputs
- Sequential logic
 - output depends on current and previous inputs
 - Requires separating previous, current, future
 - Called *state* or *tokens*

Latch Design

Buffered output
 + No backdriving

- Widely used in standard cells
 + Very robust (most important)
 - Rather large
 - Rather slow (1.5 2 FO4 delays)
 - High clock loading

Sequencing Methods

- Flip-flops
- 2-Phase Latches
- Pulsed Latches

