MICROPROCESSOR MEMORY & I/O DEVICES (CONTINUED) LECTURE 5

Dronacharya Group of Institutions

THE STEPS OF WRITING INTO MEMORY

- What happens when the programmer issues the STA instruction?
 - The microprocessor would turn **on** the WR control (WR = 0) and turn **off** the RD control (RD = 1).
 - The address is applied to the address decoder which generates a **single** Enable signal to turn on **only one** of the memory registers.
 - The data is then applied on the data lines and it is stored into the enabled register.

DIMENSIONS OF MEMORY

- Memory is usually measured by two numbers: its length and its width (Length X Width).
 - The length is the total number of locations.
 - The width is the number of bits in each location.
 - The length (total number of locations) is a function of the number of address lines.

of memory locations = $2^{(\# \text{ of address lines})}$

- So, a memory chip with 10 address lines would have $2^{10} = 1024$ locations (1K)
- Looking at it from the other side, a memory chip with 4K locations would need

Log₂ 4096=12 address lines

THE 8085 AND MEMORY

• The 8085 has 16 address lines. That means it can address

 $2^{16} = 64$ K memory locations.

- Then it will need 1 memory chip with 64 k locations, or 2 chips with 32 K in each, or 4 with 16 K each or 16 of the 4 K chips, etc.
- how would we use these address lines to control the multiple chips?

CHIP SELECT


- Usually, each memory chip has a CS (Chip Select) input. The chip will only work if an active signal is applied on that input.
- To allow the use of multiple chips in the make up of memory, we need to use a number of the address lines for the purpose of "chip selection".
 - These address lines are decoded to generate the 2ⁿ necessary CS inputs for the memory chips to be used.

CHIP SELECTION EXAMPLE

- Assume that we need to build a memory system made up of 4 of the 4 X 4 memory chips we designed earlier.
- We will need to use 2 inputs and a decoder to identify which chip will be used at what time.
- The resulting design would now look like the one on the following slide.

MEMORY MAP AND ADDRESSES

The memory map is a picture representation of the address range and shows where the different memory chips are located within the address range.

Address Range of a Memory Chip

- The address range of a particular chip is the list of all addresses that are mapped to the chip.
 - An example for the address range and its relationship to the memory chips would be the Post Office Boxes in the post office.
 - Each box has its unique number that is assigned sequentially. (memory locations)
 - The boxes are grouped into groups. (memory chips)
 - The first box in a group has the number immediately after the last box in the previous group.

INPUT AND OUTPUT DEVICES

Microprocessor need to Identify I/O devices with binary number.

IO devices can be interfaced:

- •Memory-Mapped I/O (using addresses from memory space). Device is identified by 16-bit address (Space ranges from 0000H –FFFFH
- •Standard I/O mapped or isolated I/O mapping /Peripheral Mapped I/O has separate numbering scheme for I/O devices. Instructions IN/OUT are used for data transfer. Device is identified by 8-bit address (Space ranges from 00H –FFH)

Memory	Mapping	of I/O	device
--------	---------	--------	--------

- 1.16-bit addresses are provided for I/O devices. 1.8-bit addresses are provided for I/O devices.
- 2. The devices are accessed by memory read of 2. The devices are accessed by I/O read or I/O memory write cycles.
- 3. The I/O ports or peripherals can be treated like memory locations and so all instructions related to memory can be used for data transfer between I/O device and the processor.
- 4. In memory mapped ports the data can be moved from any register to ports and viceversa.
- 5. When memory mapping is used for I/O devices, the full memory address space cannot be used for addressing memory. Hence memory mapping is useful only for small systems, where the memory requirement is less.
- 6.In memory mapped I/O devices, a large number of I/O ports can be interfaced.
- 7. For accessing the memory mapped devices, the processor executes memory read or write cycle. During this cycle IO/M is asserted low $(IO/\overline{M}=0).$

I/O Mapping of I/O device

- write cycle. During these cycles the 8-bit address is available on both low order address lines and high order address lines.
- 3. Only IN and OUT instructions can be used for data transfer between I/O device and the processor.
- 4. In I/O mapped ports the data transfer can take place only between the accumulator and ports.
- 5. When I/O mapping is used for I/O devices then the full memory address space can be used for addressing memory. Hence it is suitable for systems which requires large memory capacity.
- 6. In 1/0 mapping only 256 ports $(2^8 = 256)$ can be interfaced.
- 7. For accessing the I/O mapped devices, the processor executes I/O read or write cycle. During this cycle IO/\overline{M} is asserted high (IO/ $\overline{M} = 4$).