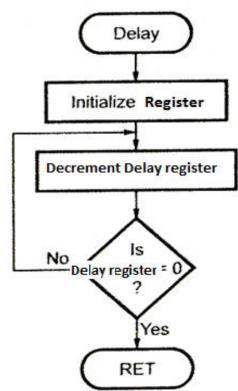

COUNTERS AND TIME DELAYS

LECTURE 3

Dronacharya Group of Institutions

COUNTER AND TIME DELAYS


- A counter is designed simply by loading appropriate number into one of the registers and using INR or DNR instructions.
- Loop is established to update the count.
- Each count is checked to determine whether it has reached final number; if not, the loop is repeated.

TIME DELAY

- Procedure used to design a specific delay.
- A register is loaded with a number, depending on the time delay required and then the register is decremented until it reaches zero by setting up a loop with conditional jump instruction.

Time delay usingOne register:

LABEL OPCODE OPERAND COMMENTS T STATES

LOOP:

MVI C,FFH ;Load register C 7
DCR C ;Decrement C 4
JNZ LOOP ;Jump back to 10/7
decrement C

Clock frequency of the system = 2 MHz

Clock period= $1/T=0.5 \mu s$

Time to execute MVI = 7 T states * $0.5 = 3.5 \mu s$

Time Delay in Loop TL= T*Loop T states * N10

= 0.5 * 14* 255

 $= 1785 \mu s = 1.8 ms$

N10 = Equivalent decimal number of hexadecimal count loaded in the delay register

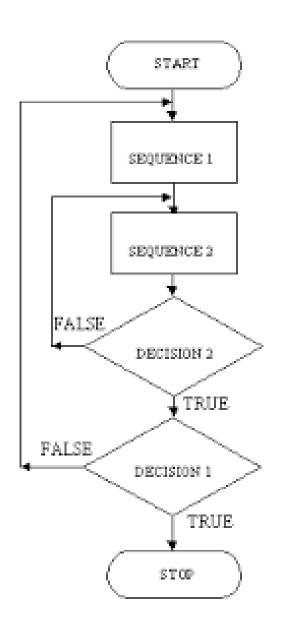
TLA= Time to execute loop instructions =TL -(3T states* clock period)=1785-1.5=1783.5 μs

TIME DELAY USING A REGISTER PAIR

Label	Opcode	Operand	Comments	T states
	LXI	В,2384Н	Load BC with 16-bit count	10
LOOP:	DCX	В	Decrement BC by 1	6
	MOV	A,C	Place contents of C in A	4
	ORA	В	OR B with C to set Zero flag	4
	JNZ	LOOP	if result not equal to 0,	10 /7
			jump back to loop	

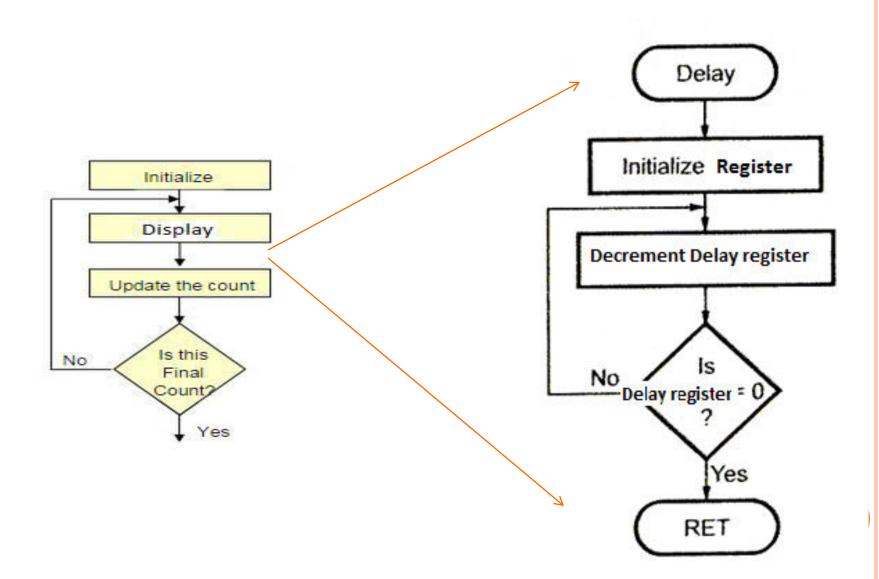
Time Delay in Loop TL= T*Loop T states * N10

= 0.5 * 24* 9092


= 109 ms

Time Delay using a LOOP within a LOOP

	MVI B,38H	7T
LOOP2:	MVI C,FFH	7 T
LOOP1:	DCR C	4T
	JNZ LOOP1	10/7 T
	DCR B	4 T
	JNZ LOOP 2	10 /7T


Delay in Loop TL1=1783.5 µs

Delay in Loop TL2= (0.5*21+TL1)*56 =100.46ms

Flowchart for time delay with two loops

Flowchart of a counter with time delay

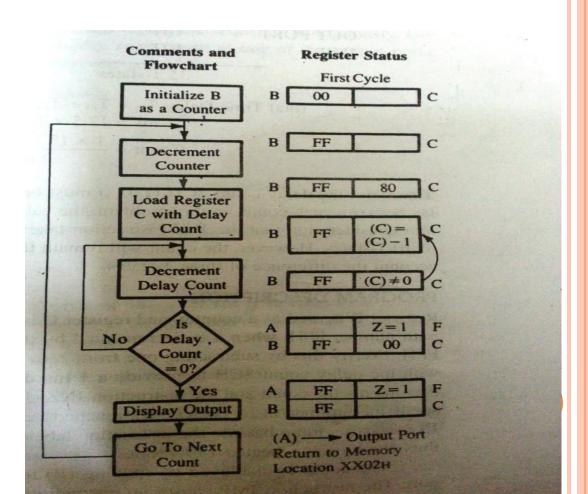
ILLUSTRATIVE PROGRAM: HEXADECIMAL COUNTER

Write a Program to count continuously from FFH to 00H using register C with delay count 8CH between each count and display the number at one of the output ports.

MVI B,00H

NEXT: DCR B

MVI C,8CH


DELAY: DCR C

JNZ DELAY

MOV A,B

OUT PORT#

JMP NEXT

ILLUSTRATIVE PROGRAM: ZERO TO NINE (MODULO TEN) COUNTER

START: MVI B,00H

MOV A,B

DSPLAY: OUT PORT#

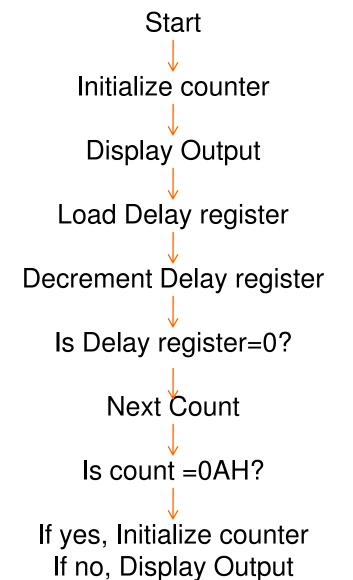
LXI H,16-bit

LOOP: DCX H

MOV A,L

ORA H

JNZ LOOP


INR B

MOV A,B

CPI 0AH

JNZ DSPLAY

JZ START

ILLUSTRATIVE PROGRAM: GENERATING PULSE WAVEFORMS

MVI D, AAH

X: MOV A, D

RLC

MOV D, A

ANI 01H

OUT PORT1

MVI B, COUNT

Y: DCR B JNZ Y

JMP X

•Generates a continuous square wave with the period of 500 Micro Sec. Assume the system clock period is 325ns, and use bit D0 output the square wave.

•Delay outside loop: T0=46 T states * 325=14.95 micro sec.

•Loop delay: TL=4.5 micro sec

•Total Td=To+TL Count=34 H

DEBUGGING COUNTER AND TIME DELAY PROGRAMS

- o It is designed to count from 100(base 10) to 0 in Hex continuously with a 1 second delay between each count.
- The delay is set up using two loops. The inner loop is executed to provide approximately 100ms delay and is repeated 10 times, using outer loop to provide a total delay of 1 second.
- The clock period of system is 330ns.

MVI A, 64H	7
X: OUT PORT1	10
Y:MVI B, 10H	7
Z:LXI D, X	10
DCX D	6
NOP	4
NOP	4
MOV A, D	4
ORA E	4
JNZ Z	10/7
DCR B	4
JZ Y	10/7
DCR A	4
CPI 00H	7
JNZ X	10/7

Delay in loop1=32T X count x 330x10⁻⁹ 100ms =32T X count x 330x10⁻⁹ Count=9470