STACK AND
SUBROUTINES

.‘ LECTURE 4
o

Dronacharya Group of Institutions

The Stack

« (iven that the stack grows backwards into
memory, 1t 1S customary to place the bottom of the
stack at the end of memory to keep 1t as far away
from user programs as possible.

 In the 8085, the stack 1s defined by setting the SP
(Stack Pointer) register.

LXI SP, FFFFH

 This sets the Stack Pointer to location FFFFH (end
of memory for the 8085).

Saving Information on the Stack

» Information 1s saved on the stack by PUSHing 1t
Oon.
— It 1s retrieved from the stack by POPing it off.

* The 8085 provides two instructions: PUSH and
POP for storing information on the stack and
retrieving it back.

— Both PUSH and POP work with register pairs ONLY .

The PUSH Instruction

« PUSH B

— Decrement SP

— Copy the contents of register B to the memory
location pointed to by SP

— Decrement SP

— Copy the wifimerits-of register C to the memory
location pofntedita by SiPe—.

P FFFE[12
FFFF SP

The POP Instruction

* POPD

— Copy the contents of the memory location
pointed to by the SP to register E

— Increment SP
— Copy the cgntenEts of the memory location

pointed t&—2—L-ZJP to fegister D
FFFB

— Increment §P = sp

ey pu—

Operation of the Stack

* During pushing, the stack operates in a
“decrement then store” style.

— The stack pointer 1s decremented first, then the
information 1s placed on the stack.

« During poping, the stack operates 1n a “use then
increment” style.

— The information is retrieved from the top of the the
stack and then the pointer 1s incremented.

« The SP pointer always points to “the top of the
stack™.

LIFO

* The order of PUSHs and POPs must be opposite
of each other in order to retrieve information back
into 1ts original location.

PUSH B
PUSHD

POP D
POP B

The PSW Register Pair

« The 8085 recognizes one additional register pair
called the PSW (Program Status Word).

— This register pair 1s made up of the Accumulator and
the Flags registers.

« It 1s possible to push the PSW onto the stack, do
whatever operations are needed, then POP 1t off of
the stack.

— The result 1s that the contents of the Accumulator and
the status of the Flags are returned to what they were
before the operations were executed.

Subroutines

* A subroutine 1s a group of instructions that will be
used repeatedly in different locations of the
program.

— Rather than repeat the same instructions several times,

they can be grouped into a subroutine that i1s called
from the different locations.

 In Assembly language, a subroutine can exist
anywhere 1n the code.

— However, 1t 1s customary to place subroutines
separately from the main program.

Subroutines

* The 8085 has two 1nstructions for dealing
with subroutines.

— The CALL 1nstruction 1s used to redirect
program execution to the subroutine.

— The RTE 1nsutruction 1s used to return the
execution to the calling routine.

The CALL Instruction

 CALL 4000H

2000
2003

Push the address of the instruction
immediately following the CALL onto the

StAC oo 1
Load the program doi—4h the|16-bit
address supplied with the CALL Hifstrudtion.
v D

FFFF SP

The RTE Instruction

« RTE
— Retrieve the return address from the top of
the stack
— Load the program counter with the return
address. Pc 2003 1
4014 T o
4015 RTE FFFD[___03 SP
e e PR

Cautions

* The CALL instruction places the return address at
the two memory locations immediately before
where the Stack Pointer 1s pointing.

— You must set the SP correctly BEFORE using the
CALL instruction.

« The RTE 1nstruction takes the contents of the two
memory locations at the top of the stack and uses
these as the return address.

— Do not modify the stack pointer in a subroutine. You
will loose the return address.

Passing Data to a Subroutine

* In Assembly Language data 1s passed to a
subroutine through registers.
— The data 1s stored in one of the registers by the calling

program and the subroutine uses the value from the
register.

* The other possibility 1s to use agreed upon
memory locations.
— The calling program stores the data in the memory

location and the subroutine retrieves the data from the
location and uses it.

Call by Reference and Call by
Value

« [f the subroutine performs operations on the
contents of the registers, then these modifications
will be transferred back to the calling program
upon returning from a subroutine.

— Call by reference

 If this 1s not desired, the subroutine should PUSH
all the registers 1t needs on the stack on entry and
POP them on return.

— The original values are restored before execution
returns to the calling program.

Cautions with PUSH and POP
« PUSH and POP should be used in opposite order.

« There has to be as many POP’s as there are
PUSH’s.

— If not, the RET statement will pick up the wrong

information from the top of the stack and the program
will fail.

+ It 1s not advisable to place PUSH or POP 1nside a
loop.

Conditional CALL and RTE

Instructions

* The 8085 supports conditional CALL and
conditional RTE instructions.

— The same conditions used with conditional JUMP
instructions can be used.

— CC, call subroutine if Carry flag 1s set.

— CNC, call subroutine if Carry flag 1s not set

— RC, return from subroutine if Carry flag is set

— RNC, return from subroutine if Carry flag 1s not set
— Eftc.

A Proper Subroutine

« According to Software Engineering practices, a
proper subroutine:
— Is only entered with a CALL and exited with an RTE

— Has a single entry point

* Do not use a CALL statement to jump into different points of
the same subroutine.

— Has a single exit point
* There should be one return statement from any subroutine.

« Following these rules, there should not be any
confusion with PUSH and POP usage.

Advance subroutine Concepts

NOP none
Halt and enter wait state
HLT none

Disable interrupts
DI nore

Enable interrupts
El none

No operation 1s performed. The instruction 1s fetched and
decoded. However no operation is executed.
Example: NOP

The CPU fimshes executing the current instruction and halts any
further execution. An interrupt or reset 1s necessary to exit from
the halt state. Example: HLT

The interrupt enable flip-flop 1s reset and all the interrupts
except the TRAP are disabled. No flags are affected. Example:
DI

The interrupt enable flip-flop 1s set and all interrupts are enabled.
No flags are affected. After a system reset or the
acknowledgement of an interrupt, the interrupt enable flip-flop 1s
reset, thus disabling the interrupts. This instruction 1s necessary
to reenable the interrupts (except TRAP). Example: EI

Advance subroutine Concepts

A subroutine calling one subroutine and that calling
another before the Return.

« For example, Main program calls subroutine B and
Subroutine B calls subroutine A before return.

 Since PC always saves at top of the stack the return is
always to the calling routine.

Subroutine | Subroutine 11

2000
Y / 2090 20C2
2050 | CALL Y X
2051 %
2052 20 |4
2053 209A CALL
| 2098 2
2090C4 | 20
209D ¢

