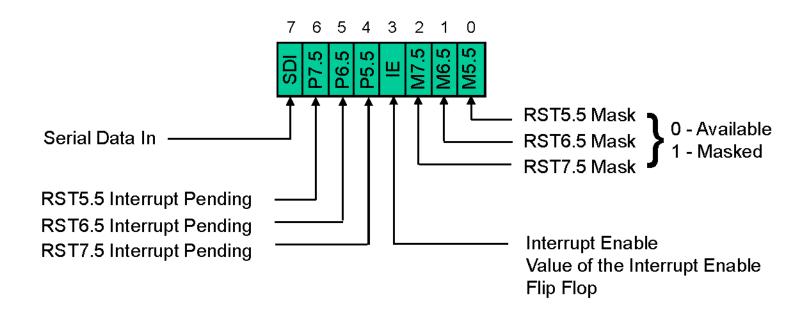

# INTERRUPTS (CONTINUED) LECTURE 7


**Dronacharya Group of Institutions** 

#### Determining the Current Mask Settings

- RIM instruction: Read Interrupt Mask
  - Load the accumulator with an 8-bit pattern showing the status of each interrupt pin and mask.



### How RIM sets the Accumulator's different bits



### The RIM Instruction and the Masks

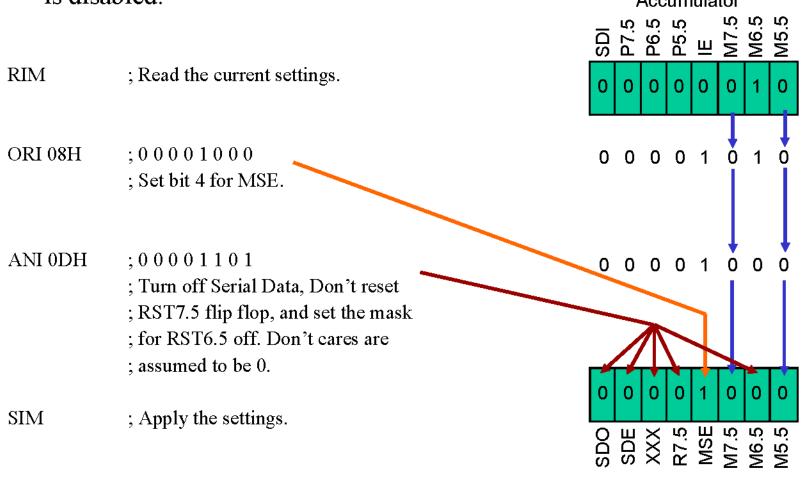
- Bits 0-2 show the current setting of the mask for each of RST 7.5, RST 6.5 and RST 5.5
  - They return the contents of the three mask flip flops.
  - They can be used by a program to read the mask settings in order to modify only the right mask.
- Bit 3 shows whether the maskable interrupt process is enabled or not.
  - It returns the contents of the Interrupt Enable Flip Flop.
  - It can be used by a program to determine whether or not interrupts are enabled.

### The RIM Instruction and the Masks

- Bits 4-6 show whether or not there are pending interrupts on RST 7.5, RST 6.5, and RST 5.5
  - Bits 4 and 5 return the current value of the RST5.5 and RST6.5 pins.
  - Bit 6 returns the current value of the RST7.5 memory flip flop.
- Bit 7 is used for Serial Data Input.
  - The RIM instruction reads the value of the SID pin on the microprocessor and returns it in this bit.

#### Pending Interrupts

- Since the 8085 has five interrupt lines, interrupts may occur during an ISR and remain pending.
  - Using the RIM instruction, the programmer can read the status of the interrupt lines and find if there are any pending interrupts.
  - The advantage is being able to find about interrupts on RST 7.5, RST 6.5, and RST 5.5 without having to enable low level interrupts like INTR.


### Using RIM and SIM to set Individual Masks

- Example: Set the mask to enable RST6.5 without modifying the masks for RST5.5 and RST7.5.
  - In order to do this correctly, we need to use the RIM instruction to find the current settings of the RST5.5 and RST7.5 masks.
  - Then we can use the SIM instruction to set the masks using this information.
  - Given that both RIM and SIM use the Accumulator, we can use some logical operations to masks the un-needed values returned by RIM and turn them into the values needed by SIM.

## Using RIM and SIM to set Individual Masks

 Assume the RST5.5 and RST7.5 are enabled and the interrupt process is disabled.

Accumulator



#### TRAP

- TRAP is the only non-maskable interrupt.
  - It does not need to be enabled because it cannot be disabled.
- It has the highest priority amongst interrupts.
- It is edge and level sensitive.
  - It needs to be high and stay high to be recognized.
  - Once it is recognized, it won't be recognized again until it goes low, then high again.
- TRAP is usually used for power failure and emergency shutoff.

#### Internal Interrupt Priority

- Internally, the 8085 implements an interrupt priority scheme.
  - The interrupts are ordered as follows:
    - TRAP
    - RST 7.5
    - RST 6.5
    - RST 5.5
    - INTR
  - However, TRAP has lower priority than the HLD signal used for DMA.

#### The 8085 Interrupts

| Interrupt<br>Name    | Maskable | Masking<br>Method | Vectored | Memory | Triggerin g Method     |
|----------------------|----------|-------------------|----------|--------|------------------------|
| INTR                 | Yes      | DI / EI           | No       | No     | Level<br>Sensitive     |
| RST 5.5 /<br>RST 6.5 | Yes      | DI / EI<br>SIM    | Yes      | No     | Level<br>Sensitive     |
| RST 7.5              | Yes      | DI / EI<br>SIM    | Yes      | Yes    | Edge<br>Sensitive      |
| TRAP                 | No       | None              | Yes      | No     | Level & Edge Sensitive |