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/Analﬂg}r between Signal Spaces and Vector Spaces\

Consider two vectors V; and V5 as shown in Fig. 1. If V] is to be

represented in terms of V5

Vi=CpeVao+V, (1)

where V. is the error.
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\ Figure 1: Representation in vector space /




The error is minimum when V1 is projected perpendicularly onto
V2. In this case, C12 is computed using dot product between V1
and Voa.

Component of V1 along V2 is

_ V1.V2 5
VA (2)

Similarly, component of V2 along V1 is

V1.V2
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Using the above discussion, analogy can be drawn to signal spaces
also.
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Let fi(t) and f5(t) be two real signals. Approximation of f;(¢) by
fo(t) over a time interval t; < ¢ < t3 can be given by

fe(t) = f1(t) — Cr2fa(?) (4)

where f.(t) is the error function.

The goal is to find C12 such that f.(¢) is minimum over the interval

considered. The energy of the error signal £ given by
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! [Z[fl(f)—clzfzft)]zdt (5)
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To find 5,
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Solving the above equation we get
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The denominator is the energy of the signal f2(t).
When fi(t) and f2(t) are orthogonal to each other C9 = 0.

Example: sinnwgt and sin mwgt be two signals where m and n are

/

integers. When m # n
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Clearly sin nwpt and sin mwgt are orthogonal to each other.

sin nwot. sin mwot dt = 0




