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/ Representation of Signals by a set of Mutually \

Orthogonal Real Functions

Let gi(t), g2(t), ..., g, (t) be n real functions that are orthogonal to

each other over an interval . f5:

1 / 2 Qz‘(t)gj(f)d‘t =0, i#]

to — 11 Jy¢,
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\’When £ is expanded we have
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Now all cross terms disappear
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[ Cigi(£)Cy9;(t)dt = 0, i # j (9)
to —11 Jy,

since g;(¢) and g;(t) are orthogonal to each other.

Solving the above equation we get
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Analogy to Vector Spaces: Projection of f(t) along the signal

g;(t)

N

:Cj




4 )

Representation of Signals by a set of Mutually
Orthogonal Complex Functions

When the basis functions are complex.

B, = / ’ o (t)[2dt (11)

t1

represents the energy of a signal.

Suppose ¢(t) is represented by the complex signal x(t)

Au+v|? = (u+v)(u +v*) = |ul?+ |v]* + vt + w?
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E. - / 9(t) — ca(t)2dt (12)
to 9
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eVE: ~ l g(t)z* (£)dt (14)

Minimising the second term yields
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Thus the coefficients can be determined by projection g(t) along

x*(t).
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