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/ Some Example Continuous Fourier transforms \
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« Linearity of the Fourier transform

F (a1f1(t) + a2f2(t)) = atF1(w) + azF2(w)

* F(A), where Ais constant Using the duality property and the
linearity property of the Fourier transform

F (A) = 2TAS(w)

 Fourier transform of e-at, t > 0 (see Figure 1)
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f(t) = e—at,J_t >0

F(w) = = e-(atjw)dt
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Figure 1: The exponential function and its Fourier transform
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e Fourier transform of the unit step function
The Fourier transform of the unit step function can be

obtained only in the limit

F(u(t)) = lim F(e )
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e Fourier transform of e =% (see Figure 2)
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Figure 2: e~'¢l* and its Fourier transform
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e Fourier transform of the rectangular function

ft) = A,-T/2<t<T/2

= 0, otherwise
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The rectangular function rect(t) and its Fourier transform

F(w) are shown in Figure 3
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Figure 3: rect(t) and its Fourier transform

e Fourier transform of the sinc function

— Using the duality property, the Fourier transform of the sinc

function can be determined (see Figure 4).
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Figure 4: sinc(t) and its Fourier transform

— An important point is that a signal that is “bandlimited” is
not “time-limited” while a signal that is “time-limited” is

not “bandlimited”
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