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Continuous Fourier transforms of Periodic
Functions

e Fourier transform of e/™“°t Using the frequency shifting

property of the Fourier transform
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e Fourier transform of coswpt
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COS Wot = Ejwet+E

F (ejwot) = F(1) shifted by wo

= 21md(Ww — Wo)

F (cos wot) = 1d(w — wo) + md(W + wo)

* Fourier transform of a periodic function f (t)
- The periodic function is not absolutely summable.

- The Fourier transform can be represented by a Fourier
series.

- The Fourier transform of the Fourier series representation of
the periodic function (period T ) can be computed
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k Note: A periodic train of impulses results in a Fourier
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Note: The Fourier transform is made up of components at

discrete frequencies.

e Fourier transform of a periodic function
Fil) =" d(t — nT) (a periodic train of impulses)
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transform which is also a periodic train of impulses (see Figure

1) .
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Figure 1: The periodic pulse train and its Fourier transform




