PRINCIPLES OF COMMUNICATIONS

UNIT-1 LECTURE-8

Sampling Theorem and its Importance

Sampling Theorem:

"Abandlimited signal can be reconstructed exactly if it is sampled at a rate atleast twice the maximum frequency component in it."

Figure 1 shows a signal g(t) that is bandlimited.

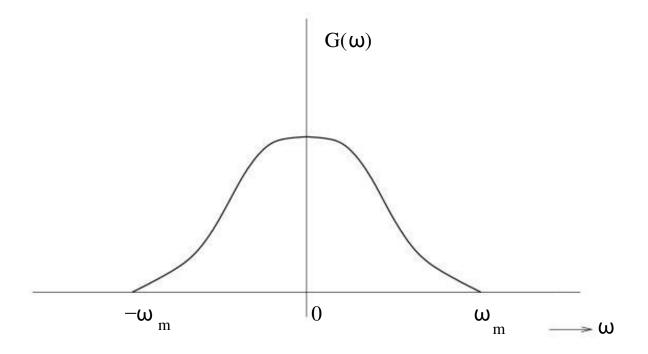


Figure 1: Spectrum of bandlimited signal g(t)

- The maximum frequency component of g(t) is fm. To recover the signal g(t) exactly from its samples it has to be sampled at a rate f_s ≥ 2fm.
- The minimum required sampling rate fs = 2fm is called

Nyquist rate.

Proof: Let g(t) be a bandlimited signal whose bandwidth is f_m ($\omega_m = 2\pi f_m$).

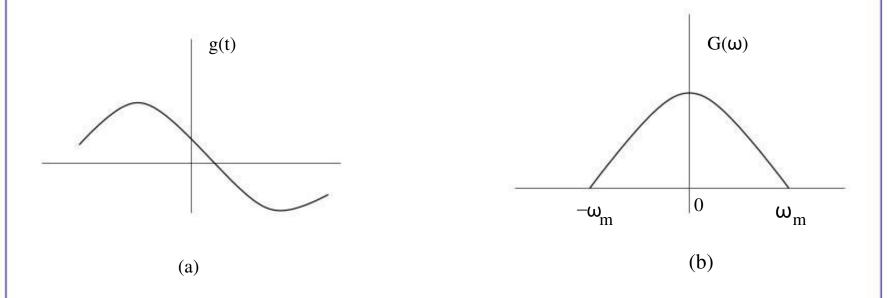


Figure 2: (a) Original signal g(t) (b) Spectrum G(ω)

 δT (t) is the sampling signal with $f_S = 1/T > 2 f_m$.

\$

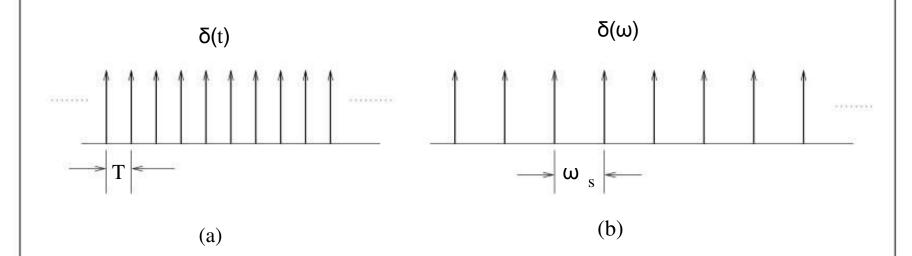


Figure 3: (a) sampling signal δ_T (t) (b) Spectrum δ_T (ω)

• Let $g_s(t)$ be the sampled signal. Its Fourier Transform $G_s(\omega)$ is given by

\$

$$\begin{array}{lll} F\left(g_{s}(t)\right) & = & F\left[g(t)\delta_{T}\left(t\right)\right] \\ & = & F\left[g(t)\right] & \sum_{n=-\infty}^{\infty} \delta(t-nT) \\ & = & \frac{1}{2\pi} \left[G(\omega)*\omega_{0}\sum_{n=-\infty}^{\infty} \delta(\omega-n\omega_{0})\right] \\ & = & \frac{1}{T}\sum_{n=-\infty}^{\infty} G(\omega)*\delta(\omega-n\omega_{0}) \\ & G_{s}(\omega) & = & F\left[g(t)+2g(t)\cos(\omega_{0}t)+2g(t)\cos(2\omega_{0}t)+\cdots\right] \\ & G_{s}(\omega) & = & \frac{1}{T}\sum_{n=-\infty}^{\infty} G(\omega-n\omega_{0}) \end{array}$$

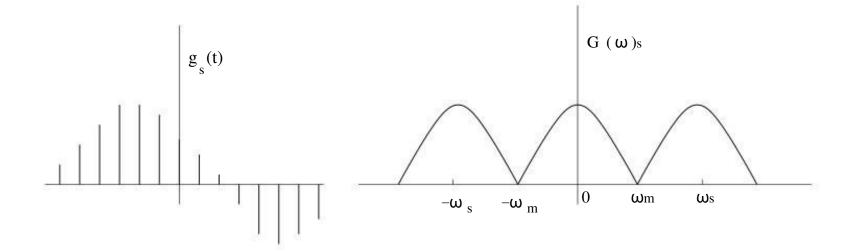


Figure 4: (a) sampled signal g_s(t) (b) Spectrum G_s(ω)

• If $\omega_s = 2\omega_m$, i.e., $T = 1/2f_m$. Therefore, $G_s(\omega)$ is given by

$$G_s(\omega) = 1 \sum_{T = -\infty}^{\infty} G(\omega - n\omega_m)$$

- To recover the original signal G(ω):
 - 1. Filter with a Gate function, $H_{2\omega_m}$ (ω)ofwidth $2\omega_m$.

2. Scale it by T.

$$G(\omega) = T G_s(\omega)H_{2\omega_m}(\omega)$$
.

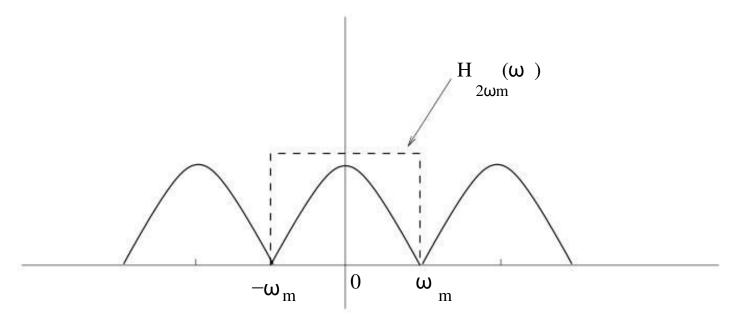


Figure 5: Recovery of signal by filtering with a filter of width 2ωm

- Aliasing
 - Aliasing is a phenomenon where the high frequency components of the sampled signal interfere with each other

because of inadequate sampling ω_s < $2\omega_m$.

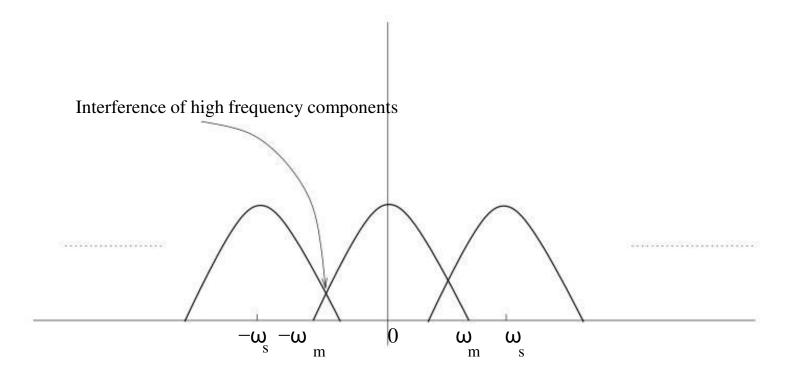


Figure 6: Aliasing due to inadequate sampling

Aliasing leads to distortion in recovered signal. This is the reason why sampling frequency should be atleast twice the bandwidth of the signal.

- Oversampling
 - In practice signal are oversampled, where f_s is significantly higher than Nyquist rate to avoid aliasing.

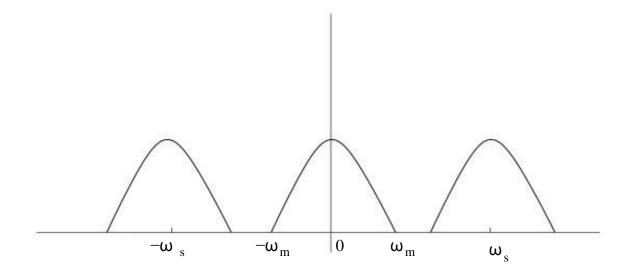


Figure 7: Oversampled signal-avoids aliasing

Problem: Define the frequency domain equivalent of the Sampling Theorem and prove it.