PRINCIPLES OF COMMUNICATIONS

UNIT-2 LECTURE-6

Random Process: Some Examples

• Quadrature Modulation Process Given two random variables $X_1(t)$ and $X_2(t)$

$$X_1(t) = X(t)\cos(2\omega_0 t + \Theta)$$

$$X_2(t) = X(t)\sin(2\omega_0 t + \Theta)$$

where ω_0 is a constant, and Θ is a random variable that is uniformly distributed over a range of 0 to 2π , that is,

$$f_{\Theta}(\theta) = \frac{1}{2\pi}, 0 \le \theta \le 2\pi$$

= 0, elsewhere

The correlation function of $X_1(t)$ and $X_2(t)$ is

$$R_{12}(\tau) = E[X_1(t)X_2(t+\tau)]$$

$$= E[X(t)\cos(\omega_0 t + \Theta)X(t-\tau)\sin(2\omega_0(t-\tau) + \Theta)]$$

$$= \frac{1}{2\pi}$$

$$= \frac{1}{2\pi}X(t)X(t-\tau)\cos(\omega_0 t + \Theta)\sin(\omega_0(t-\tau) + \Theta)d\Theta$$

$$= \frac{1}{2Rx(\tau)\sin(\omega_0 \tau)}$$

Random Process: Time vs. Ensemble Averages

Ensemble averages

- Difficult to generate a number of realisations of a random process
- =⇒ use time averages
- Mean

$$\mu x(T) = \frac{1}{2T} \int_{-T}^{\int_{+T}} x(t) dt$$

Autocorrelation

$$Rx(\tau, T) = \frac{1}{2T} \int_{-T}^{T} x(t)x(t + \tau) dt$$

- Ergodicity A random process is called ergodic if
 - 1. it is ergodic in mean:

$$\lim_{T \to +\infty} \mu_x(T) = \mu_X$$

$$\lim_{T \to +\infty} var[\mu_x(T)] = 0$$

2. it is ergodic in autocorrelation:

$$\lim_{T \to +\infty} R_x(\tau, T) = R_X(\tau)$$

$$\lim_{T \to +\infty} var[R_x(\tau, T)] = 0$$

where μ_X and $R_X(\tau)$ are the ensemble averages of the same random process.

Random Processes and Linear Shift Invariant Systems(LSI)

- The communication channel can be thought of as a system
- The signal that is transmitted through the channel is a realisation of the random process
- It is necessary to understand the behaviour of a signal that is input to a system.
- For analysis purposes it is assumed that a system is LSI
- Linear Shift Invariant(LSI) Systems

Figure 1: An LSI system

In Figure 1 , h[n] is an LSI system if it satisfies the following properties

– Linearity The system is called linear, if the following equation holds for all signals $x_1[n]$ and $x_2[n]$ and any a and b:

$$egin{array}{ccc} x_1[n] &
ightarrow & y_1[n] \\ & x_2[n] &
ightarrow & y_2[n] \\ \Longrightarrow & a.x_1[n] + b.x_2[n] &
ightarrow & a.y_1[n] + b.y_2[n] \end{array}$$

– Shift Invariance The system is called Shift Invariant, if the following equation holds for any signal x[n]

$$egin{array}{lll} x[n] &
ightarrow & y[n] \\ \Longrightarrow & x[n-n_0] &
ightarrow & y[n-n_0] \end{array}$$

- * The assumption is that the output of the system is linear, in that if the input scaled, the output is scaled by the same factor.
- * The system supports superposition
 - · When two signals are added in the time domain, the output is equal to the sum of the individual responses
- * If the input to the system is delayed by n_0 , the output is also delayed by n_0 .