PRINCIPLES OF COMMUNICATIONS

UNIT-3 LECTURE-3

 $\theta_i(t) = \omega_c t + k_p m(t)$

where $\omega_c = 2\pi f_c$.

2. Frequency Modulation:

$$\omega_{i}(t) = \omega_{c} + k_{f}m(t)$$

$$\Theta_{i}(t) = \omega_{i}(t) dt$$

$$= 2\pi \int_{0}^{t} t \int_{0}^{t} t$$

$$= 2\pi \int_{0}^{t} f_{i}(t) dt + \int_{0}^{t} k_{f}m(t) dt$$

 Phase Modulation If m(t) = Am cos(2πfmt) is the message signal, then the phase modulated signal is given by

۲

 $s(t) = A_c \cos(\omega_c t + k_p m(t))$

Here, k_p is phase sensitivity or phase modulation index.

 Frequency Modulation If m(t) = Am cos(2πfmt) is the message signal, then the Frequency modulated signal is given by

 $2\pi f_i(t) = \omega_c + k_f A_m \cos(2\pi f_m t)$

$$\Theta_{i}(t) = \omega_{c}t + \frac{k_{f} A_{m}}{2\pi f_{m}} \sin(2\pi f_{m}t)$$

here, $\frac{k_f A_m}{2\pi}$ is called frequency deviation (Δf) and $\frac{\Delta f}{f_m}$ is called modulation index (β). The Frequency modulated signal is given by

1

 $s(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$

Depending on how small β is FM is either Narrowband $FM(\beta \ll 1)$ or Wideband $FM(\beta \approx 1)$.

- Narrow-Band FM (NBFM) In NBFM $\beta \ll 1$, therefor s(t) reduces as follows:

$$s(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$$

= $A_c \cos(2\pi f_c t) \cos(\beta \sin(2\pi f_m t)) - A_c \sin(2\pi f_c t) \sin(\beta \sin(2\pi f_m t))$

Since, β is very small, the above equation reduces to

$$s(t) = A_c \cos(2\pi f_c t) - A_c \beta \sin(2\pi f_m t) \sin(2\pi f_c t)$$

