PRINCIPLES OF COMMUNICATIONS

UNIT-4 LECTURE-1

Digital Modulation

- Continuous-wave(CW) modulation (recap):
 - A parameter of a sinusoidal carrier wave is varied continuously in accordance with the message signal.
 - * Amplitude
 - * Frequency
 - * Phase
- Digital Modulation:
 - Pulse Modulation: Analog pulse modulation: A periodic pulse train issued as a carrier. The following parameters of the pulse are modified in accordance with the message signal. Signal is transmitted at discrete intervals of time.
 - * Pulse amplitude
 - * Pulse width
 - * Pulse duration

- Pulse Modulation: Digital pulse modulation: Message signal represented in a form that is discrete in both amplitude and time.
 - * The signal is transmitted as a sequence of coded pulses
 - * No continuous wave in this form of transmission

١

Analog Pulse Modulation

- Pulse Amplitude Modulation(PAM)
 - Amplitudes of regularly spaced pulses varied in proportion to the corresponding sampled values of a continuous message signal.
 - Pulses can be of a rectangular form or some other appropriate shape.
 - Pulse-amplitude modulation is similar to natural sampling, where the message signal is multiplied by a periodic train of rectangular pulses.
 - In natural sampling the top of each modulated rectangular pulse varies with the message signal, whereas in PAM it is maintained flat. The PAM signal is shown in Figure 1.

.

$$s(t) = \sum_{n=-\infty}^{+\infty} m(nT_s)h(t - nT_s)$$

 $-h(T_s)$ is a standard rectangular pulse of unit amplitude and duration T, defined as follows

$$h(t) = \begin{cases} = 1, & 0 \le t \le T \\ = \frac{1}{2}, & t = 0, t = T \\ = 0, \text{otherwise} \end{cases}$$

- The instantaneously sampled version of m(t) is given by

$$m_{\delta}(t) = \sum_{n=-\infty}^{+\infty} m(nT_s)\delta(t - nT_s)$$