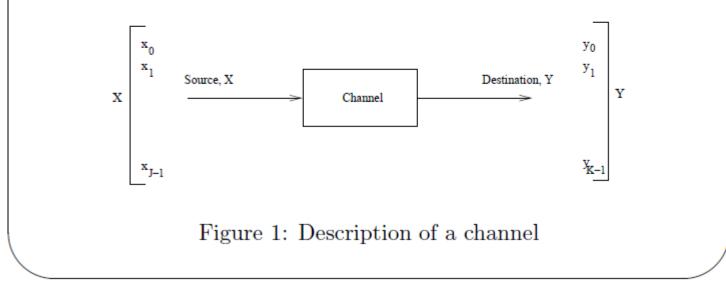
PRINCIPLES OF COMMUNICATIONS

UNIT-4 LECTURE-4

Channel Coding

Channel Coding is done to ensure that the signal transmitted is recovered with very low probability of error at the destination.

Let X and Y be the random variables of symbols at the source and destination respectively. The description of the channel is shown in the Figure. 1



%

The channel is described by a set of transition probabilities

$$P(Y = y_k | X = x_j) = p(y_k | x_j), \forall j, k$$

such that

The joint probability is now given by

$$p(x_j, y_k) = P(X = x_j, Y = y_k)$$
$$= P(Y = y_k | X = x_j) P(X = x_j)$$
$$= p(y_k | x_j) p(x_j)$$

Binary Symmetric Channel

&

- A discrete memoryless channel with J = K = 2.
- The Channel has two input symbols(x₀ = 0, x₁ = 1) and two output symbols(y₀ = 0, y₁ = 1).
- The channel is symmetric because the probability of receiving a 1 if a 0 is sent is same as the probability of receiving a 0 if a 1 is sent.
- The conditional probability of error is denoted by p. A binary symmetric channel is shown in Figure. 2 and its transition probability matrix is given by

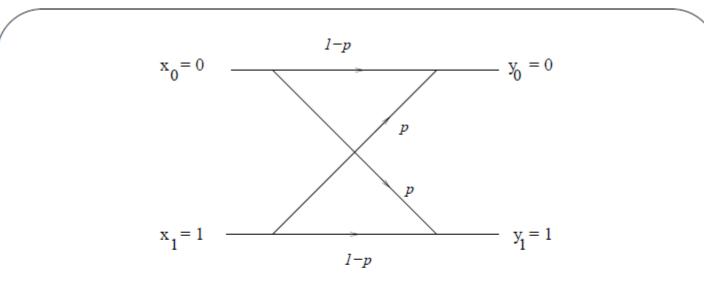


Figure 2: Binary Symmetric Channel

• Mutual Information

If the output Y is the noisy version of the channel input X and $H(\mathcal{X})$ is the uncertainity associated with X, then the uncertainity about X after observing Y, $H(\mathcal{X}|\mathcal{Y})$ is given by

$$H(\mathcal{X}|\mathcal{Y}) = \sum_{k=0}^{K-1} H(\mathcal{X}|Y=y_k)p(y_k)$$
(1)

$$= \sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j | y_k) p(y_k) log_2 \left[\frac{1}{p(x_j | y_k)} \right]$$
(2)
$$= \sum_{k=0}^{K-1} \sum_{j=0}^{J-1} p(x_j, y_k) log_2 \left[\frac{1}{p(x_j | y_k)} \right]$$
(3)

The quantity $H(\mathcal{X}|\mathcal{Y})$ is called *Conditional Entropy*. It is the amount of uncertainity about the channel input after the channel output is observed. Since $H(\mathcal{X})$ is the uncertainity in channel input before observing the output, $H(\mathcal{X}) - H(\mathcal{X}|\mathcal{Y})$ represents the uncertainity in channel input that is resolved by observing the channel output. This uncertainity measure is termed as *Mutual Information* of the channel and is denoted by