Error Detection
and Correction

Error Detection and Correction

10.1 Types of Errors

10.2 Detection

10.3 Error Correction

Error Detection and Correction

= Data can be corrupted during transmission. For
reliable communication, error must be detected
and corrected

= Error Detection and Correction are implemented
either at the data link layer or the transport layer
of the OSI model

10.1 Type of Errors

Errors I

‘ Single-bit ' ‘ Burst '

Type of Errors(cont’d)

» Single-Bit Error

~ is when only one bit in the data unit has
changed (ex : ASCII STX - ASCII LF)

0 changed to 1

‘o‘o\o‘orﬁ01 ofofofofofof1fo

Received Sent

Type of Errors(cont’d)

» Multiple-Bit Error

~ is when two or more nonconsecutive bits in
the data unit have changed(ex : ASCII B - ASCII LF)

Two errors

10— 01011]0f1]o0

Sent Received

Type of Errors(cont’d)

~ means that 2 or more consecutive bits in the
data unit have changed

Length of burst
‘J error (5 bits) ‘

Sent
Ell‘o‘o‘omo‘o‘o‘lo

Bits corrupted by burst error

oft]ofojofofu]r

Received

10.2 Detection

» Error detection uses the concept of redundancy,
which means adding extra bits for detecting
errors at the destination

Detection(cont’d)

» Redundancy

Receiver node Sender node
10100000000101010 | Data Data| 10100000000101010
Yes
Reject data
No
Y
10100000000101010 (1011101 10100000000101010 11011101
Data & A Data &
redundancy redundancy

m

Detection(cont’d)

» Detection methods

‘ Detection methods |
Parity check Cyclic Checksum
redundancy check

Detection(cont’d)

» Parity Check

- A parity bit is added to every data unit so that the total number
of 1s(including the parity bit) becomes even for even-parity
check or odd for odd-parity check

> Simple parity check

Receiver node Sender node
Drop parity

bit and accept data 1100001

Data
Y

Count Calculate

bits parity bit
Bits 1100001 (1

—(Transmission Medium (?7
Ao

AN

Detection —examples

‘Example 1 ‘

Suppose the sender wants to send the word world. In
ASCII the five characters are coded as

1110111 1101111 1110010 1101100 1100100
The following shows the actual bits sent

11101110 11011110 11100100 11011000 1100100

Detection - examples

‘Example 2 ‘

Now suppose the word world in Example 1 1s received by
the receiver without being corrupted in transmission.

11101110 11011110 11100100 11011000 11001001

The recerver counts the 1s 1in each character and comes up
with even numbers (6, 6, 4, 4, 4). The data are accepted.

Detection - examples

‘Example 3 ‘

Now suppose the word world in Example 1 1s corrupted
during transmission.

11111110 11011110 11101100 11011000 11001001

The receiver counts the 1s 1n each character and comes up
with even and odd numbers (7, 6, 5, 4, 4). The receiver
knows that the data are corrupted, discards them, and asks
for retransmission.

Two -Dimensional Parity Check

Original data
1100111 1011101 0111001 0101001

1 1 0 0 1 1 1 11

1 O 1 1 1

Row parities

0
0 1 1 1 0 0 1 10
0

0 1 0 1 0 1 0] 1 Column parities

TR

—-€ 11001111 10111011 01110010 01010011 01010101

Data and parity bits

Wn - example

Suppose the following block 1s sent:
10101001 00111001 11011101 11100111 10101010

However, 1t 1s hit by a burst noise of length 8, and some
bits are corrupted.

1010 1001 11011101 11100111 10101010

When the receiver checks the parity bits, some of the bits
do not follow the even-parity rule and the whole block 1s

discarded.
MIOOOII 10001001 11011101 11100111 10101010

S ——

Detection(cont’d)

» CRC(Cyclic Redundancy Check)

~ is based on binarv division.

Data CRC

n bits

Divisor ‘ Data CRC ‘ Divisor | n+1 bits

|

Remainder

Zero, accept
Nonzero, reject

Receiver Sender

Detection(cc

zeros. The number
of zeros is one less

e - than th ber of
~ uses modular-2 division. Quotient i e D
Divisor \
\ 111101
1 101)100100000
110 1*
1000
1101
1010
110 lv
1110
110 lv
When the leftmost bit
. . 0110
of the remainder is zero, 0000
we must use 0000 instead V
of the original divisor. 1100
1101
001

Remainder

D = _ 4 — _ __a¥ 1IN
ete Ctlc Quotient
Divisor Data plus CRC ved
\ 111101 ata plus receive
/
1 101)1001000O01
110 1*
1000
1101
1010
110 lv
1110
110 lv
When the leftmost bit

) } 0110

of the remainder is zero, 0000
we must use 0000 instead V
of the original divisor. 1101
1101
00O

Result

Detection(cont’d)

» Polynomials

- CRC generator(divisor) is most often represented not as
a string of 1s and Os, but as an algebraic polynomial.

7 2
X +x5+x +x+1

Detection(cont’d)

» A polynorr Polynomial

[x7+x5+x2+x+1]
|

\

6 | .4 3

X
!
0

Divisor

B

Detection(cont’d)

» Standard polynomials

CRC-12 CRC-16 CRC-ITU-T
‘ x12+ x11+ x3 +x+1 ‘ x16+ x15+ x2+ 1 x16+ x12+ x5+ 1 ‘
CRC-32

‘ x32 +x26+x23’+x22+x16+x12+x11 +x10+x8+x7+x5+x4+x2+x+ 1 ‘

Detection(cont’d)

» Checksum
~ used by the higher layer protocols

~ is based on the concept of redundancy(VRC,
LRC, CRC)

Detection(cont’d)

Sender

Receiver
Section 1 | n bits
Section 2 | n bits

Checksum
Section k | n bits

Sum

Complement

If the result is O, keep;
otherwise, discard.

Checksum

Section 1 | n bits

Section 2 | n bits

Checksum

Section k | n bits

Packet

Sum

Complement

Checksum

Detection(cont’d)

» To create the checksum the sender does the
following:
- The unit is divided into K sections, each of n bits.

> Section 1 and 2 are added together using one’s
complement.

- Section 3 is added to the result of the previous step.
- Section 4 is added to the result of the previous step.

> The process repeats until section k is added to the result
of the previous step.

> The final result is complemented to make the checksum.

Detection(cont’d)

» data unit and checksum

The recerver adds the data unit and the checksum field. If the result
1s all 1s, the data unit 1s accepted: otherwise it 1s discarded.

T

- T

Sum —0
Complement 0

Receiver |< T —T < | Sender |

Detection%agrhig -

1 0 0
4 17 0 A

10.12.14.5
12.6.7.9

4,5, and 0 » (01000101 00000000

28 » (00000000 00011100

1 » 00000000 00000001

0 and O » (00000000 00000000

4 and 17 » (00000100 00010001

0 » 00000000 00000000

10.12 » 00001010 00001100

14.5 » 00001110 00000101

12.6 » 00001100 00000110

7.9 » 00000111 00001001

Sum » 01110100 01001110

Checksum » 10001011 10110001 ——

Detection(cont’d)

» O|A| 9.7 (at a sender)

Original data: 10101001 00111001
1010100°
0011100°
11100010 Sum

00011101 Checksum
10101001 00111001 &

ra
o>

Detection(cont’d)

» Example (at a receiver)

Received data : 10101001 00111001 00011101
10101001

00111001

00011101

IT111111 € Sum

00000000 €« Complement

10.3 Error Correction

~ can be handled in two ways

* when an error is discovered, the receiver can
have the sender retransmit the entire data unit.

¥ 3 receiver can use an error-correcting code,
which automatically corrects certain errors.

Error Correction(cont’d)

» Single-Bit Error Correction
o parity bit
> The secret of error correction is to locate the invalid bit
or bits

> For ASCII code, it needs a three-bit redundancy
code(000-111)

Error Correction(cont’d)

» Redundancy Bits

~ to calculate the number of redundancy bits (R)

reailired to correct a aiven nuumbher of data hit (M)
Redundancy

Data (m) bits (r) bits

O - Em-m

Total m + r bits

Error Correction(cont’d)

» If the total number of bits in a transmittable unit
is m+r, then r must be able to indicate at least
m-+r+1 different states

)
2 Z2m-+r + 1

ex) For value of m is 7(ASCIl), the smallest r value
that can satisfy this equation is 4

24>7 +4 + 1

Error Correction(cont’d)

» Relationshin between data and redundancv bits

Error Correction(cont’d)

» Hamming Code
~ developed by R.W.Hamming
» positions of redundancy bits in Hamming code

11 10 9 8 7 6 5 4 3 2 |

dlid|{djr|d|d]|d|F

[Redundancy bits

Error Correction(cont’d)

» each r bit is the VRC bit for one combination of
data bits
bits 1, 3,5, 7,9, 11

r, = bits 2,3,6,7,10, 11
r4 — bItS 4, 5, 6,7
rs = bits 8,9, 10, 11

Error Correction(cont’d)

» Redunc-=-+ kit~ ~=l-ilosicmlonmsl N

' ™
r1 will take care
of these bits

. -

1011 1001 0111 0101 0011 0001
11 9 7 3 3 1

d|d|{d|rg |d|d|d|rq | d|Fr|r

.) _‘\.
r2 will take care
of these bits ,

10111010 01110110 mm
11 10 76 3 2

d|d|d|rg | d|d|d|rg |d]|r»|Fr

Error Correction(cont’d)

» Redund: Fq will take care’

of these bits ,

N

011101100101 0100
7 6 5 4

dld[d[rm|a[d]d]rg]d

, ~
r’ will take care
ol these bits

,e'ezszefffﬁﬁfﬁfgggggﬁﬁh_

101110101001 1000
11 10 9 3

vy

d]|d|d]rg|d][d][d]rg]d

Error Correction(cont’d)

Data: 1001101

v

Data | 1 0 0 1 1 0 1

11 10 9 8 7 6 5 4 3 2 1
| I | | I |
Adding | | 1 0 0 1 1 0 1 1
11 10 9 8 7 6 5 4 3 2 1

| | I |
Adding r, | 1 0 0 1 1 0 1 0 1
11 10 9 8 7 6 5 4 3 2 1

| |
Adding ry | 1 0 0 1 1 0 0 1 0 1
11 10 9 8 7 6 5 4 3 2 1
| |

Adding rg | 1 0 0 1 1 1 0 0 1 0 1
10 9 8 7 6 5 4 3 2 1

Code: 10011100101

Error Correction(cont’d)

» Error Detection and Correction

Received Sent

10010100101|{—100111

=

Error

Error Correction(con t’d)

11 10 9 8 7

6 5 3 1

oonoo.

e

1T 10 9 8 7

6 5 4 3 2 1

o g0 3

11 10 9 8 7

6 5 4 3 2

11T 10 9 8 7

6 5 4 3 2 1

Ljojof1rjof1

fREEE

0 1 1 1
The bit in position 7
1S 1n €rror. +
7

Error Correction(cont’d)

» Multiple-Bit Error Correction

- redundancy bits calculated on overlapping sets of data
units can also be used to correct multiple-bit errors.

Ex) to correct double-bit errors, we must take into
consideration that two bits can be a combination of any
two bits in the entire sequence

