

10.1 Types of Errors

10.2 Detection

10.3 Error Correction

 Data can be corrupted during transmission. For
reliable communication, error must be detected
and corrected

 Error Detection and Correction are implemented
either at the data link layer or the transport layer
of the OSI model

 Single-Bit Error

~ is when only one bit in the data unit has
changed (ex : ASCII STX - ASCII LF)

 Multiple-Bit Error

~ is when two or more nonconsecutive bits in
the data unit have changed(ex : ASCII B - ASCII LF)

 Burst Error

~ means that 2 or more consecutive bits in the
data unit have changed

 Error detection uses the concept of redundancy,
which means adding extra bits for detecting
errors at the destination

 Redundancy

 Detection methods

 Parity Check

◦ A parity bit is added to every data unit so that the total number
of 1s(including the parity bit) becomes even for even-parity
check or odd for odd-parity check

◦ Simple parity check

Example 1Example 1

Suppose the sender wants to send the word world. In

ASCII the five characters are coded as

 1110111 1101111 1110010 1101100 1100100

The following shows the actual bits sent

 11101110 11011110 11100100 11011000 11001001

Example 2Example 2

Now suppose the word world in Example 1 is received by

the receiver without being corrupted in transmission.

 11101110 11011110 11100100 11011000 11001001

The receiver counts the 1s in each character and comes up

with even numbers (6, 6, 4, 4, 4). The data are accepted.

 Example 3Example 3

Now suppose the word world in Example 1 is corrupted

during transmission.

 11111110 11011110 11101100 11011000 11001001

The receiver counts the 1s in each character and comes up

with even and odd numbers (7, 6, 5, 4, 4). The receiver

knows that the data are corrupted, discards them, and asks

for retransmission.

Example 4Example 4

Suppose the following block is sent:

 10101001 00111001 11011101 11100111 10101010

However, it is hit by a burst noise of length 8, and some

bits are corrupted.

 10100011 10001001 11011101 11100111 10101010

When the receiver checks the parity bits, some of the bits

do not follow the even-parity rule and the whole block is

discarded.

 10100011 10001001 11011101 11100111 10101010

 CRC(Cyclic Redundancy Check)

~ is based on binary division.

 CRC generator
~ uses modular-2 division.

Binary Division

in a

CRC Generator

Binary Division

in a

CRC Checker

 Polynomials
◦ CRC generator(divisor) is most often represented not as

a string of 1s and 0s, but as an algebraic polynomial.

 A polynomial representing a divisor

 Standard polynomials

 Checksum

~ used by the higher layer protocols

~ is based on the concept of redundancy(VRC,
LRC, CRC ….)

 Checksum Generator

 To create the checksum the sender does the
following:
◦ The unit is divided into K sections, each of n bits.

◦ Section 1 and 2 are added together using one’s
complement.

◦ Section 3 is added to the result of the previous step.

◦ Section 4 is added to the result of the previous step.

◦ The process repeats until section k is added to the result
of the previous step.

◦ The final result is complemented to make the checksum.

 data unit and checksum

 예제 9.7 (at a sender)

Original data : 10101001 00111001

10101001

00111001

11100010 Sum

00011101 Checksum

10101001 00111001 00011101  전송

 Example (at a receiver)

Received data : 10101001 00111001 00011101

10101001

 00111001

 00011101

11111111  Sum

00000000  Complement

~ can be handled in two ways

 when an error is discovered, the receiver can
have the sender retransmit the entire data unit.

 a receiver can use an error-correcting code,
which automatically corrects certain errors.

 Single-Bit Error Correction
◦ parity bit

◦ The secret of error correction is to locate the invalid bit
or bits

◦ For ASCII code, it needs a three-bit redundancy
code(000-111)

 Redundancy Bits

~ to calculate the number of redundancy bits (R)
required to correct a given number of data bit (M)

 If the total number of bits in a transmittable unit
is m+r, then r must be able to indicate at least
m+r+1 different states

 2
r
  m + r + 1

ex) For value of m is 7(ASCII), the smallest r value
that can satisfy this equation is 4

 24  7 + 4 + 1

 Relationship between data and redundancy bits
Number of Data Bits

(m)

Number of Redundancy Bits

(r)

Total Bits

(m+r)

1

2

3

4

5

6

7

2

3

3

3

4

4

4

3

5

6

7

9

10

11

 Hamming Code

 ~ developed by R.W.Hamming

 positions of redundancy bits in Hamming code

 each r bit is the VRC bit for one combination of
data bits
r1 = bits 1, 3, 5, 7, 9, 11

r2 = bits 2, 3, 6, 7, 10, 11

r4 = bits 4, 5, 6, 7

r8 = bits 8, 9, 10, 11

 Redundancy bits calculation(cont’d)

 Redundancy bits calculation

 Calculating the r values

Calculating Even Parity

 Error Detection and Correction

 Error detection using Hamming Code

 Multiple-Bit Error Correction
◦ redundancy bits calculated on overlapping sets of data

units can also be used to correct multiple-bit errors.

Ex) to correct double-bit errors, we must take into
consideration that two bits can be a combination of any
two bits in the entire sequence

