
### Unit-2

## Lecture -6

Polarization mode dispersion, Overall Fiber dispersion in multimode and single mode fibers, Fiber dispersion techniques, Non linear Effect

#### Polarization Mode dispersion



Suppose that the core refractive index has different values along two orthogonal directions corresponding to electric field oscillation direction (polarizations). We can take x and y axes along these directions. An input light will travel along the fiber with and  $E_y$  polarizations having different group velocities and hence arrive at the output at different times

 $E_{\mathbf{x}}$ 

© 1999 S.O. Kasap, Opto electronic (Prentice Hall)

### Polarization Mode dispersion

• The effects of fiber-birefringence on the polarization states of an optical are another source of pulse broadening. **Polarization mode dispersion** (PMD) is due to slightly different velocity for each polarization mode because of the lack of perfectly symmetric & anisotropicity of the fiber. If the group velocities of two orthogonal polarization modes are  $v_{gx}$  and  $v_{gy}$  then the differential time delay  $\Delta \tau_{pol}$  between these two polarization over a distance *L* is

$$\Delta \tau_{pol} = \left| \frac{L}{v_{gx}} - \frac{L}{v_{gy}} \right|$$
<sup>[3-26]</sup>

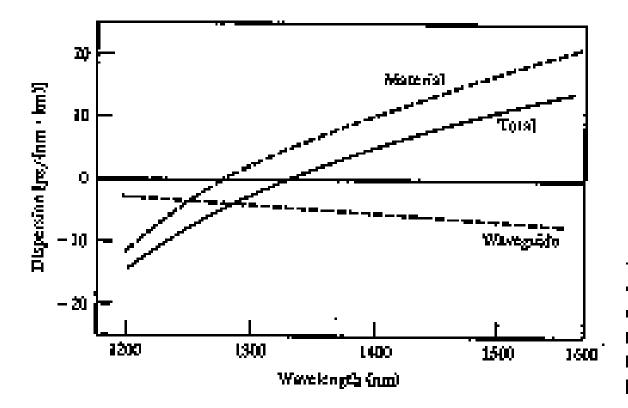
• The rms value of the differential group delay can be approximated as:

$$\left\langle \Delta \tau_{pol} \right\rangle \approx D_{PMD} \sqrt{L}$$
 [3-27]

### Chromatic & Total Dispersion

• Chromatic dispersion includes the material & waveguide dispersions.

$$D_{ch}(\lambda) \approx \left| D_{mat} + D_{wg} \right|$$


$$\sigma_{ch} = D_{ch}(\lambda) L \sigma_{\lambda}$$
[3-28]

• Total dispersion is the sum of chromatic , polarization dispersion and other dispersion types and the total rms pulse spreading can be approximately written as:

$$D_{total} \approx \left| D_{ch} + D_{pol} + \dots \right|$$

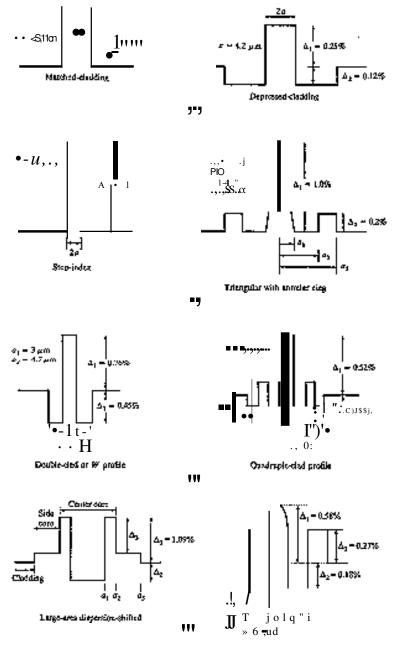
$$\sigma_{total} = D_{total} L \sigma_{\lambda}$$
<sup>[3-29]</sup>

### Total Dispersion, zero Dispersion

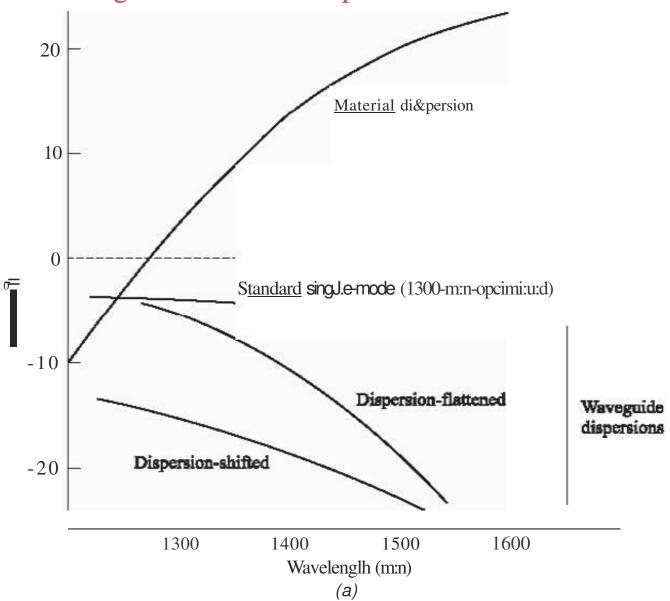


#### NGURE 3-16

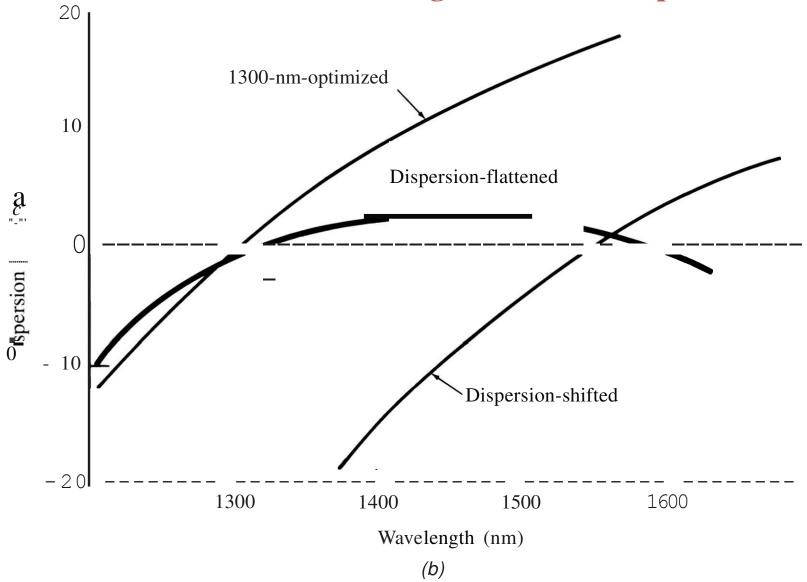
Examples of the magnitudes of material and waveguide dispersion as a function of optical wavelength for a singlemode fused-silica-core fiber. (Reproduced with permission from Keck,<sup>16</sup> @ 1985, IEEE,)


Fact 1) Minimum distortion at wavelength about 1300 nm for single mode silica fiber.

Fact 2) Minimum attenuation is at 1550 nm for sinlge mode silica fiber.


Strategy: shifting the zero-dispersion to longer wavelength for minimum attenuation and dispersion.

#### Optimum single mode fiber & distortion/attenuation characteristics


- Fact 1) Minimum distortion at wavelength about 1300 nm for single mode silica fiber.
- Fact 2) Minimum attenuation is at 1550 nm for sinlge mode silica fiber.
- **Strategy**: shifting the zero-dispersion to longer wavelength for minimum attenuation and dispersion by Modifying waveguide dispersion by changing from a simple step-index core profile to more complicated profiles. There are four major categories to do that:
- 1 1300 nm optimized single mode step-fibers: matched cladding (mode diameter 9.6 micrometer) and depressed-cladding (mode diameter about 9 micrometer)
- 2 Dispersion shifted fibers.
- 3 Dispersion-flattened fibers.
- 4 Large-effective area (LEA) fibers (less nonlinearities for fiber optical amplifier applications, effective cross section areas are typically greater than 100μm<sup>2</sup>).



#### Single mode fiber dispersion



#### Single mode fiber dispersion



#### Single mode Cut-off wavelength & Dispersion

- Fundamental mode is HE<sub>11</sub> or LP<sub>01</sub> with V=2.405 and  $\lambda_c = \frac{2\pi a}{V} \sqrt{n_1^2 n_2^2}$ [3-30] ٠
- Dispersion: ٠

$$D(\lambda) = \frac{d\tau}{d\lambda} \approx D_{mat}(\lambda) + D_{wg}(\lambda)$$

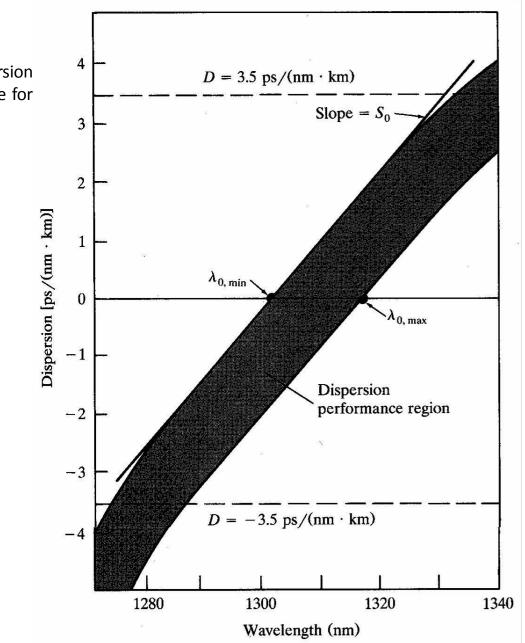
$$\sigma = D(\lambda)L\sigma_{\lambda}$$
[3-31]

- For non-dispersion-shifted fibers (1270 nm 1340 nm)٠
- For dispersion shifted fibers (1500 nm- 1600 nm) ۲

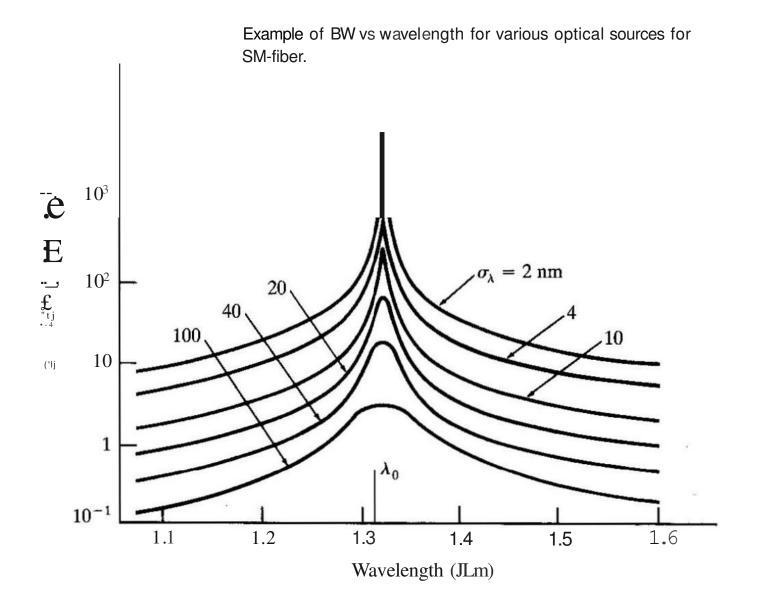
## Dispersion for non-dispersion-shifted fibers (1270 nm – 1340 nm)

$$\tau(\lambda) = \tau_0 + \frac{S_0}{8} \left(\lambda - \frac{\lambda_0^2}{\lambda}\right)^2$$
<sup>[3-33]</sup>

•  $\tau_0$  is relative delay minimum at the zero-dispersion wavelength  $\lambda_0$ , and  $S_0$  is the value of the dispersion slope in ps/(nm<sup>2</sup>.km)


$$S_0 = S(\lambda_0) = \frac{dD}{d\lambda} \Big|_{\lambda = \lambda_0}$$
[3-34]

$$D(\lambda) = \frac{\lambda S_0}{4} \begin{bmatrix} 1 - (\frac{\lambda_0}{\lambda})^4 \end{bmatrix}$$
<sup>[3-35]</sup>


# Dispersion for dispersion shifted fibers (1500 nm- 1600 nm)

$$\tau(\lambda) = \tau_0 + \frac{S_0}{2} (\lambda - \lambda_0)^2$$
<sup>[3-36]</sup>

$$D(\lambda) = (\lambda - \lambda_0) S_0$$
<sup>[3-37]</sup>



Example of dispersion Performance curve for Set of SM-fiber

