Unit-3

Lecture -2

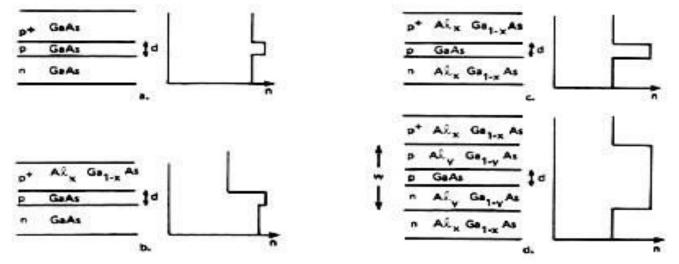
LED, Hetrojunction, Homojunctions, Materials

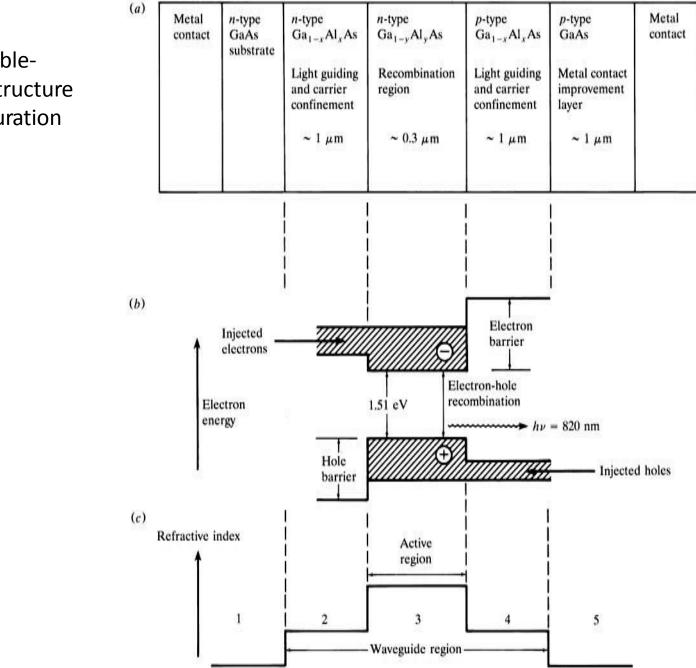
The Light Emitting Diode (LED)

- For fiber-optics, the LED should have a high radiance (light intensity), fast response time and a high quantum efficiency
- Double or single hetero-structure devices
- Surface emitting (diffused radiation) Vs Edge emitting (more directional) LED's
- Emitted wavelength depends on bandgap energy

$$E_g = h\nu = hc / \lambda$$

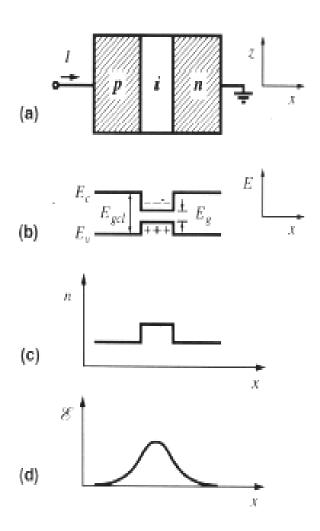
Heterojunction


- Heterojunction is the advanced junction design to reduce diffraction loss in the optical cavity.
- This is accomplished by modification of the laser material to control the index of refraction of the cavity and the width of the junction.


- The p-n junction of the basic GaAs LED/laser described before is called a homojunction because only one type of semiconductor material is used in the junction with different dopants to produce the junction itself.
- The index of refraction of the material depends upon the impurity used and the doping level.

- *The Heterojunction* region is actually lightly doped with p-type material and has the highest index of refraction.
- The n-type material and the more heavily doped p-type material both have lower indices of refraction.
- This produces a light pipe effect that helps to confine the laser light to the active junction region.
- In the homojunction, however, this index difference is low and much light is lost.

Gallium Arsenide-Aluminum Gallium Arsenide Heterojunction


- Structure and index of refraction n for various types of junctions in gallium arsenide with a junction width d.
- (*a*) is for a homojunction.
- (*b*) is for a gallium arsenide-aluminum gallium arsenide single heterojunction.
- (*c*) is for a gallium arsenide-aluminum gallium arsenide double heterojunction with improved optical confinement.
- (*d*) is for a double heterojunction with a large optical cavity of width w.

Doubleheterostructure configuration

Structure of a Generic Light Emitter: Double-Heterostructure Device

Double Heterostructure provides **transverse confinement** of both Carriers and Photons

(transverse direction \rightarrow direction normal to the plane of the *pn* junction, *x* axis)

- a) Schematic of a structure
- Energy diagram of the conduction and valence bands vs. transverse distance
- c) Refractive index profile
- Electric field profile for a mode traveling in the z-direction

OPERATING WAVELENGTH

Fiber optic communication systems operate in the

- 850-nm,
- 1300-nm, and
- 1550-nm wavelength windows.
- Semiconductor sources are designed to operate at wavelengths that minimize optical fiber absorption and maximize system bandwidth

LED Wavelength

$$\lambda(\mu m) = \frac{1.2399}{E(eV)}$$

 $\lambda = hc/E(eV)$

- λ = wavelength in microns
- H = Planks constant
- C = speed of light
- E = Photon energy in eV

Bandgap Energy and Possible Wavelength Ranges in Various Materials

Material	Formula	Wavelength Range λ (μm)	Bandgap Energy W _g (eV)
Indium Phosphide	InP	0.92	1.35
Indium Arsenide	InAs	3.6	0.34
Gallium Phosphide	GaP	0.55	2.24
Gallium Arsenide	GaAs	0.87	1.42
Aluminium Arsenide	AIAs	0.59	2.09
Gallium Indium Phosphide	GaInP	0.64-0.68	1.82-1.94
Aluminium Gallium Arsenide	AlGaAs	0.8-0.9	1.4-1.55
Indium Gallium Arsenide	InGaAs	1.0-1.3	0.95-1.24
Indium Gallium Arsenide Phosphide	InGaAsP	0.9-1.7	0.73-1.35