Unit-3

Lecture -5

LED Spectrum, Quantum Efficiency, Internal Efficiency, External Efficiency, Power Bandwidth

LED Spectral Width

Edge emitting LED's have slightly narrow line width

Quantum Efficiency

• Internal quantum efficiency is the ratio between the radiative recombination rate and the sum of radiative and nonradiative recombination rates

•
$$\eta_{\rm int} = R_r / (R_r + R_{nr})$$

• For exponential decay of excess carriers, the radiative recombination lifetime is n/R_r and the nonradiative recombination lifetime is n/R_{nr}

Internal Efficiency

If the current injected into the LED is *I*, then the total number of recombination per second is, $R_r + R_{nr} = I/q$ where, *q* is the charge of an electron.

That is, $R_r = \eta_{int} I/q$.

Since R_r is the total number of photons generated per second, the optical power generated internal to the LED depends on the internal quantum efficiency

External Efficiency

Fresnel Transmission Coefficient

$$T(0) = \frac{4n_1n_2}{(n_1 + n_2)^2}$$

External Efficiency for air $n_2=1, n_1=n$

$$\eta_{ext} = \frac{1}{n(n+1)^2}$$

Optical Power $\propto I(f)$; Electrical Power $\propto I^2(f)$

Electrical Loss = 2 x Optical Loss

Drawbacks of LED

- Large line width (30-40 nm)
- Large beam width (Low coupling to the fiber)
- Low output power
- Low E/O conversion efficiency

Advantages

- Robust
- Linear