Unit-1

Lecture -2

Bit Rates, Design Consideration, Power Penalties, Power Budget

Typical bit rates at different wavelengths

Wavelength	LED Systems	LASER Systems.
800-900 nm (Typically Multimode Fiber)	150 Mb/s.km	2500 Mb/s.km
1300 nm (Lowest dispersion)	1500 Mb/s.km	25 Gb/s.km (InGaAsP Laser)
1550 nm (Lowest Attenuation)	1200 Mb/s.km	Up to 500 Gb/s.km (Best demo)

Design Considerations

- Link Power Budget
 - There is enough power margin in the system to meet the given BER
- Rise Time Budget
 - Each element of the link is fast enough to meet the given bit rate

These two budgets give necessary conditions for satisfactory operation

Optical power-loss model

 $P_T = P_s - P_R = ml_c + nl_{sp} + \alpha_f L + System Margin$

 P_T : Total loss; P_s : Source power; P_R : Rx sensitivitym connectors; n splicesTry Ex: 8.1

Power Budget Example

- Specify a 20-Mb/s data rate and a BER = 10^{-9} .
- With a Si *pin* photodiode at 850 nm, the required receiver input signal is -42 dBm.
- Select a GaAlAs LED that couples 50 mW into a 50-µm core diameter fiber flylead.
- Assume a 1-dB loss occurs at each cable interface and a 6-dB system margin.
- The possible transmission distance L = 6 km can be found from

 $P_T = P_S - P_R = 29 dB = 2I_c + \alpha L + \text{system margin} = 2(1 dB) + \alpha L + 6 dB$

• The link power budget can be represented graphically (see the right-hand figure).

