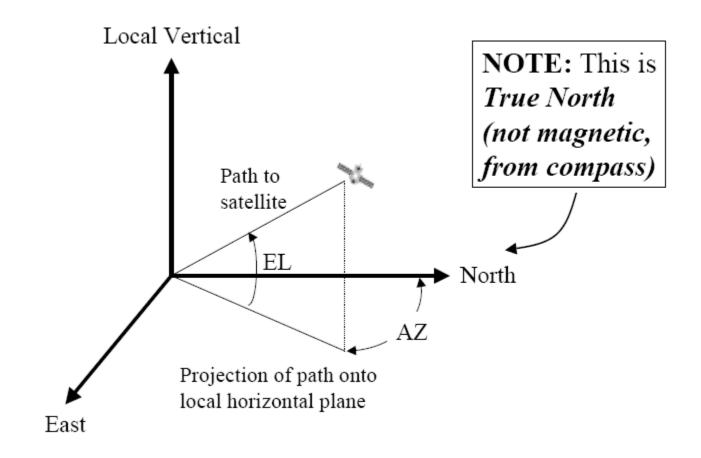
Satellite Communications

Look Angle

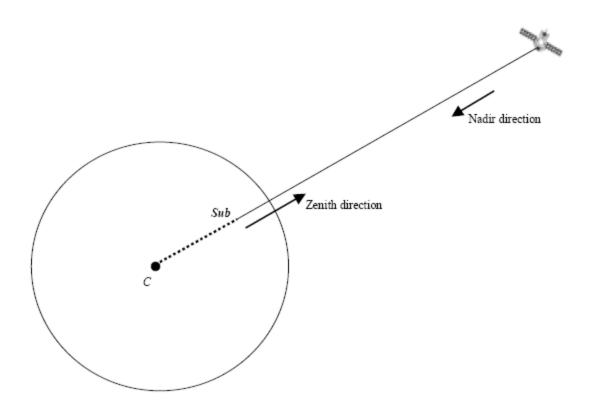
Look Angle Determination

- Look angles: The coordinates to which an ES must point to communicate with a satellite. These are azimuth (AZ) and elevation angle (EL)
 - AZ: The angle measured from N to E to projection of satellite path onto horizontal plane
 - EL: The angle measured from the horizontal plane to the orbit plane
- The *subsatellite point*: The point, on the earth's surface, of intersection between a line from the earth's center to the satellite

Look Angle Definition



Definitions (Contd.)



Calculating Look Angle

- *Need* six Orbital Elements
- *Calculate* the orbit from these Orbital Elements
- *Define* the orbital plane
- Locate satellite at time t with respect to the First Point of Aries
- *Find location* of the Greenwich Meridian relative to the first point of Aries
- *Use Spherical Trigonometry* to find the position of the satellite relative to a point on the earth's surface

Coordinate System

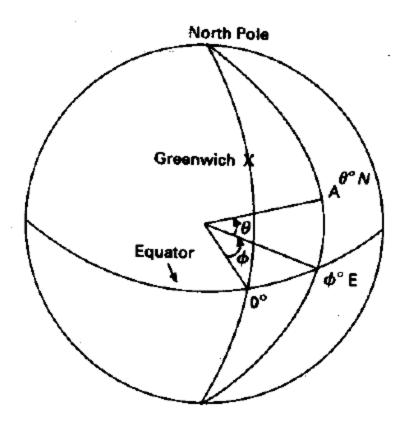
• Latitude: Angular distance, measured in degrees, north or south of the equator.

L from -90 to +90 (or from 90S to 90N)

• **Longitude:** Angular distance, measured in degrees, from a given reference longitudinal line (Greenwich, London).

l from 0 to 360E (or 180W to 180E)

Coordinate System



Latitude (θ °N) and longitude (ϕ °E) of a point A.

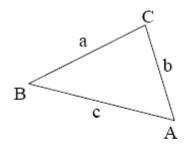
Satellite Coordinates

- SUB-SATELLITE POINT Latitude L_s Longitude l_s
- EARTH STATION LOCATION Latitude $\mathbf{L_e}$ Longitude $\mathbf{l_e}$
- Calculate γ, ANGLE AT EARTH CENTER

Between the line that connects the earth-center to the satellite and the line from the earth-center to the earth station.

Review of Geometry

- Review of plane trigonometry
 - Law of Sines
 - Law of Cosines
 - Law of Tangents

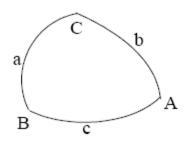


$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$\tan\frac{C}{2} = \sqrt{\frac{(d-a)(d-b)}{d(d-c)}}, d = \frac{a+b+c}{2}$$

- Review of spherical trigonometry
 - Law of Sines
 - Law of Cosines for angles
 - Law of Cosines for sides



$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

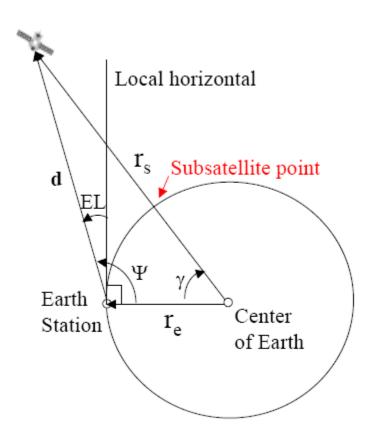
 $\cos a = \cos b \cos c + \sin b \sin c \cos A$

 $\cos A = -\cos B \cos C + \sin B \sin C \cos a$

Geometry of Elevation Angle

- Plane in picture is the one that includes center of the earth, Earth Station and Satellite.
- Subsatellite point will also be on the same plane.

$$El = \psi$$
- 90°
 γ = central angle
 r_s = radius to the satellite
 r_s = radius of the earth



Central Angle

 γ is defined so that it is non-negative and

$$\cos(\gamma) = \cos(Le)\cos(L_s)\cos(l_s - l_e) + \sin(L_e)\sin(L_s)$$

The magnitude of the vectors joining the center of the earth, the satellite and the earth station are related by the law of cosine:

$$d = r_s \left[1 + \left(\frac{r_e}{r_s} \right)^2 - 2 \left(\frac{r_e}{r_s} \right) \cos(\gamma) \right]^{1/2}$$

Elevation Angle Calculation

By the sine law we have

$$\frac{r_s}{\sin\left(\psi\right)} = \frac{d}{\sin\left(\gamma\right)}$$

Which yields

$$\cos(El) = \frac{\sin(\gamma)}{\left[1 + \left(\frac{r_e}{r_s}\right)^2 - 2\left(\frac{r_e}{r_s}\right)\cos(\gamma)\right]^{1/2}}$$

Elevation Angle for GEO Satellite

Using $r_s = 42,164 \text{ km}$ and $r_e = 6,378.14 \text{ km}$ gives

 $d = 42,164 [1.0228826 -0.3025396 cos(\gamma)]1/2 km$ Which finally gives the elevation angle

$$\cos(El) = \frac{\sin(\gamma)}{[1.0228826 - 0.3025396 \cos(\gamma)]^{1/2}}$$

Azimuth Angle Calculation

- More complex approach for non-geo satellites.
- Different formulas and corrections apply depending on the combination of positions of the earth station and subsatellite point with relation to each of the four quadrants (NW, NE, SW, SE).
- Its calculation is simple for GEO satellites

Azimuth Angle Calculation for GEO Satellites

- SUB-SATELLITE POINT
 - Equatorial plane, Latitude Ls = 0o
 - Longitude Is
- EARTH STATION LOCATION
 - Latitude Le
 - Longitude le

Azimuth Angle for GEO sat.

The original calculation previously shown:

$$\cos(\gamma) = \cos(Le)\cos(L_s)\cos(l_s - l_e) + \sin(L_e)\sin(L_s)$$

Simplifies using $L_s = 0^{\circ}$ since the satellite is over the equator:

$$\cos(\gamma) = \cos(Le)\cos(l_s - l_e)$$

Azimuth Angle for GEO sat.

To find the azimuth angle, an *intermediate angle*, α , must first be found. The intermediate angle allows the correct quadrant (see Figs. 2.10 & 2.13) to be found since the azimuthal direction can lie anywhere between 0° (true North) and clockwise through 360° (back to true North again). The intermediate angle is found from

$$\alpha = \tan^{-1} \left[\frac{\tan(l_s - l_e)}{\sin(L_e)} \right]$$

Azimuth Angle for GEO sat.

- Case 1: Earth station in the Northern Hemisphere with
 - (a) Satellite to the SE of the earth station: $Az = 180^{\circ} \alpha$
 - (b) Satellite to the SW of the earth station: $Az = 180^{\circ} + \alpha$
- Case 2: Earth station in the Southern Hemisphere with
 - (c) Satellite to the NE of the earth station: $Az = \alpha$
 - (d) Satellite to the NW of the earth station: $Az = 360^{\circ} \alpha$

Example for Look Angle Calculation of a GEO satellite

FIND the Elevation and Azimuth

Look Angles for the following case:

Earth Station Latitude	52° N London, England Dockland region
Earth Station Longitude	0° Dockland region
Satellite Latitude	0° Geostationary
Satellite Longitude	Geostationary INTELSAT IOR Primary

Example (Contd.)

Step 1. Find the central angle
$$\gamma$$

$$\cos(\gamma) = \cos(L_e) \cos(l_s - l_e)$$

$$= \cos(52) \cos(66)$$

$$= 0.2504$$
yielding $\gamma = 75.4981^\circ$

Step 2. Find the elevation angle El

$$\cos(El) = \frac{\sin(\gamma)}{\left[1.0228826 - 0.3025396 \cos(\gamma)\right]^{1/2}}$$

$$El = 5.85^{\circ}$$

Example (Contd.)

Step 3. Find the intermediate angle, α

$$\alpha = \tan^{-1} \left[\frac{\tan |(l_s - l_e)|}{\sin (L_e)} \right]$$

$$= \tan^{-1} \left[(\tan (66 - 0)) / \sin (52) \right]$$

$$= 70.6668$$

Example (Contd.)

The earth station is in the Northern hemisphere and the satellite is to the South East of the earth station. This gives

$$Az = 180^{\circ}$$
 - α
= $180 - 70.6668 = 109.333^{\circ}$ (clockwise from true North)

ANSWER: The look-angles to the satellite are

Elevation Angle = 5.85°

Azimuth Angle = 109.33°