Check polynomials and parity check matrices for cyclic codes J

Let C be a cyclic [n,k]-code with the generator polynomial g(x) (of degree n - k). By
the last theorem g(x) is a factor of x"- 1. Hence

x"- 1 =g(x)h(x)

for some h(x) of degree k (where h(x) is called the check polynomial of C).

Theorem Let C be a cyclic code in R, with a generator polynomial g(x) and a check
polynomial h(x). Then an c(x) € R, is a codeword of C if ¢c(x)h(x) = 0 - this and next
congruences are modulo x"- 1.

Proof Note, that g(x)h(x) =x"-1=0
(i) c(x) € C= c(x) = a(x)g(x) for some a(x) € R,
= c(x)h(x) = a(x) g(x)h(x)

0

0.

0

(i) c(x)h(x)
c(x) = q(x)g(x) + r(x), deg r(x) < n— k= deg g(x)
c(x)h(x) =0 = r(x)h(x) =0 (mod x" - 1)
Since deg (r(x)h(x)) < n— k+ k= n, we have r(x)h(x) = 0 in F[x] and therefore
r(x) = 0 = c(x) = q(x)g(x) € C.



POLYNOMIAL REPRESENTATION of DUAL CODES ]

Since dim ((h(x))) = n - k= dim (C*) we might easily be fooled to think that the
check polynomial h(x) of the code C generates the dual code C-.

Reality is “slightly different":

Theorem Suppose C is a cyclic [n,k]-code with the check polynomial

then
(i) a parity-check matrix for Cis
h, h_, .. h O 0
o 0 h h h, 0
0 0 0 & h,

(i) Ctis the cyclic code generated by the polynomial
;z(x) =h +h_x+..+hx"

l.e. the of h(x).



POLYNOMIAL REPRESENTATION of DUAL CODES ]

Proof A polynomial ¢(x) = c,+ c;x + ... + ¢, X"~ represents a code from C if
c(x)h(x) = 0. For c(x)h(x) to be 0 the coefficients at xX,..., x"-! must be zero, i.e.

coh, +eh  +...+c.hy=0
ch, +c,h  +...+c h,=0

c, . h+c, h_ +..+c, h,=0
Therefore, any codeword ¢, c;... ¢,.; € Cis orthogonal to the word h, h, ;...h,00...0
and to its cyclic shifts.

Rows of the matrix H are therefore in C*. Moreover, since h, = 1, these row-vectors
are linearly independent. Their number is n- k= dim (C‘). Hence His a generator
matrix for C, i.e. a parity-check matrix for C.

In order to show that C* is a cyclic code generated by the polynomial
;z(x): b +h_x+..+ hx"

it is sufficient to show that A(x)is a factor of x"-1.

Observe that l_z(x)zxkh(x_l) and since h(x Hg(x 1) = (x1)"-1

we have that Xh(x x"kg(x ) =x"(x"-1)=1-x

and therefore A(x) is indeed a factor of x" -1.



ENCODING with CYCLIC CODES |

J

Encoding using a cyclic code can be done by a multiplication of two polynomials - a

message polynomial and the generating polynomial for the cyclic code.

Let C be an (n,k)-code over an field F with the generator polynomial
9(X) =gg+ Ogyx+...+g,_4x"Tofdegreer=n-k

If a message vector mis represented by a polynomial m(x) of degree kand mis
encoded by

m= ¢ =ma@G;,

then the following relation between m(x) and c(x) holds
c(x) = m(x)g(x).
Such an encoding can be realized by the shift register shown in Figure below,

where input is the k-bit message to be encoded followed by n - k0" and the output
will be the encoded messane L
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Shift-register encodings of cyclic codes. Small circles represent multiplication by
the corresponding constant, © nodes represent modular addition, squares are
delay elements




ENCODING of CYCLIC CODES i ]

Another method for encoding of cyclic codes is based on the following (so called
systematic) representation of the generator and parity-check matrices for cyclic
codes.

Theorem Let C be an (n,k)-code with generator polynomial g(x) and r=n- k. For
i=01,....,k-1, let Gz, be the length n vector whose polynomial is G, j(x) = x ™! -x ™
mod g( ) Then the k* n matrix G, with row vectors G, is a generator matrix for C.

Moreover, if H2J is the length n vector correspondlng to polynomial H, ,(x) = X mod
g(x), then the r * n matrix H, with row vectors H, ;is a parity check matrix for C. If
the message vector mis encoded by

m=c=mG,,
then the relation between corresponding polynomials is
c(x) = xm(x) - [xXm(x)] mod g(x).

On this basis one can construct the following shift-register encoder for the case of
a systematic representation of the generator for a cyclic code:

Shift-register encoder for systematic representation of cyclic codes. Switch A is
closed for first k ticks and closed for last rticks; switch B is down for first k ticks and
up for last rticks.



Hamming codes as cyclic codes ]

Definition (Again!) Let r be a positive integer and let Hbe an r * (2" -1)
matrix whose columns are distinct non-zero vectors of V(r,2). Then the
code having H as its parity-check matrix is called binary Hamming
code denoted by Ham (r,2).

It can be shown that binary Hamming codes are equivalent to cyclic
codes.

Theorem The binary Hamming code Ham (r,2) is equivalent to a cyclic
code.

Definition If p(x) is an irreducible polynomial of degree r such that x is a
primitive element of the field A x] / p(x), then p(x) is called a primitive
polynomial.

Theorem If p(x) is a primitive polynomial over GF(2) of degree r, then
the cyclic code (p(x)) is the code Ham (r,2).



Hamming codes as cyclic codes

Example Polynomial x3 + x + 1 is irreducible over GF(2) and x is
primitive element of the field F,[x]/ (X3 + x + 1).

FIx]/ (@+x+1)=

{O!X5X2!X3=X+15X4=X2+X5X5=X2+X+1,X6=X2+1}

The parity-check matrix for a cyclic version of Ham (3,2)

B
S O =
oS = O
_o O

1 01 1
1 1 10
0O 1 11



PROOF of THEOREM ]

The binary Hamming code Ham (r,2) is equivalent to a cyclic code.

It is known from algebra that if p(x) is an irreducible polynomial of degree r, then
the ring F,[x] / p(x) is a field of order 2.

In addition, every finite field has a primitive element. Therefore, there exists an
element o of F,[x] / p(x) such that

Fox]/p(x)={0, 1, a, a?,..., a? 2}.
Let us identify an element a,+ a, + ... a, X ' of F;[x] / p(x) with the column vector
(@p @ry--es A1 4q)T
and consider the binary r * (2" -1) matrix
H=[1 a a? ... a?"2].
Let now C be the binary linear code having H as a parity check matrix.
Since the columns of H are all distinct non-zero vectors of V(r,2), C = Ham (r,2).
Putting n= 2" -1 we get
C={fofi... T, eVn2|fp+fia+t...+f ;a1 =0 (2)
={f(x) € R, [ f(a) = 0in F5[x] / p(x)} (3)
If f(x) e Cand r(x) € R,, then r(x)f(x) € C because
r(a)f(a) =r(a) e 0 =0
and therefore, by one of the previous theorems, this version of Ham (r,2) is cyclic.
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BCH codes and Reed-Solomon codes

To the most important cyclic codes for applications belong BCH codes and Reed-
Solomon codes.

Definition A polynomial p is said to be minimal for a complex number xin Z; if p(x)
=0 and p is irreducible over Z,.

Definition A cyclic code of codewords of length nover Z,, g = p', pis a prime, is
called BCH code' of distance d if its generator g(x) is the least common multiple of
the minimal polynomials for

o I, o |+1’___, o | +d -2
for some |, where
o is the primitive n-th root of unity.

If n=qg™ - 1 for some m, then the BCH code is called primitive.
Definition A Reed-Solomon code is a primitive BCH code with n=qg - 1.

Properties:
 Reed-Solomon codes are self-dual.

'BHC stands for Bose and Ray-Chaudhuri and Hocquenghem who discovered
these codes.



CONVOLUTION CODES ]

Very often it is important to encode an infinite stream or several streams of data
— say bits.

Convolution codes, with simple encoding and decoding, are quite a simple
dgeneralization of linear codes and have encodings as cyclic codes.

An (n,k) convolution code (CC) is defined by an k x n generator matrix,
entries of which are polynomials over F,

For example,
G, =[x +1, x> +x+1]

is the generator matrix for a (2,1) convolution code CC, and
I1+x O x+1
G, =
O 1 X
is the generator matrix for a (3,2) convolution code CC,
10



ENCODING of FINITE POLYNOMIALS

An (n,k) convolution code with a k x n generator matrix G can be usd to encode a
k-tuple of plain-polynomials (polynomial input information)

I=(lo(x), 14(X), ... Lk.4(x))

to get an n-tuple of crypto-polynomials

As follows

C=1.G
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EXAMPLES

EXAMPLE 1

(XC+x+1D.G=+x+1).(xX*+1,x2+x+ 1]
=(X°+Xe+X +1,xX°+x4+1)

EXAMPLE 2

(x"+x,x° +1).G, =(x" +x,x" +1). 01
X
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ENCODING of INFINITE INPUT STREAMS ]

The way infinite streams are encoded using convolution codes will be
lllustrated on the code CC.,.

An input stream | = (I, |, ,...) is mapped into the output stream
C=(Cpos C19s Co15 Cy4...) defined by

Co(X) — Coo -+ C01X + ... = (X2 -+ 1) I(X)
and
CiX)=Cip+Cyx+...=(x2+ x + 1) I(x).

The first multiplication can be done by the first shift register from the next
figure; second multiplication can be performed by the second shift register
on the next slide and it holds

Coi=li+liy Cpu=li+ g+ i
That is the output streams C, and C, are obtained by convolving the input
stream with polynomials of G;.
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ENCODING )

The first shift register

output
@,

N

input

1 X x?2

will multiply the input stream by x2+1 and the second shift register

output

—_—

N

input

1 X x?2

will multiply the input stream by x?+x+1.
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ENCODING and DECODING

The following shift-register will therefore be an encoder for the

code CC,
2 Output streams

X X
DN 615/
> C10:C11:C12

For encoding of convolution codes so called

COO!CO1 =C02

| — 1

Viterbi algorithm

Is used.



