Linear Block Codes

The parity bits of linear block codes are linear combination of the message. Therefore, we can represent the encoder by a linear system described by matrices.

Basic Definitions

- Linearity: If $\mathbf{m}_1 \rightarrow \mathbf{c}_1$ and $\mathbf{m}_2 \rightarrow \mathbf{c}_2$ then $\mathbf{m}_1 \oplus \mathbf{m}_2 \rightarrow \mathbf{c}_1 \oplus \mathbf{c}_2$
 - where m is a k-bit information sequence
 c is an n-bit codeword.
 ⊕ is a bit-by-bit mod-2 addition without carry
- <u>Linear code</u>: The sum of any two codewords is a codeword.
- Observation: The all-zero sequence is a codeword in every linear block code.

Basic Definitions (cont'd)

 <u>Def</u>: The weight of a codeword c_i, denoted by w(c_i), is the

number of of nonzero elements in the codeword.

<u>Def</u>: The minimum weight of a code, w_{min}, is the smallest

weight of the nonzero codewords in the code.

• <u>Theorem</u>: In any linear code, $d_{\min} = w_{\min}$

Systematic codes	n-k	k		
	check bits	information bits		

Any linear block code can be put in systematic form

linear Encoder.

By linear transformation

- $c = m \cdot G = m_0 g_0 + m_1 g_0 + \dots + m_{k-1} g_{k-1}$
- The code *C* is called a *k*-dimensional subspace.
- G is called a generator matrix of the code.
- Here G is a k ×n matrix of rank k of elements from GF(2), g is the i-th row vector of G.
- The rows of G are linearly independent since G is assumed to have rank k.

Example:

(7, 4) Hamming code over GF(2) The encoding equation for this code is given by

$$c_{0} = m_{0}$$

$$c_{1} = m_{1}$$

$$c_{2} = m_{2}$$

$$c_{3} = m_{3}$$

$$c_{4} = m_{0} + m_{1} + m_{2}$$

$$c_{5} = m_{1} + m_{2} + m_{3}$$

$$c_{6} = m_{0} + m_{1} + m_{3}$$

	1	0	0	0	1	0	1]
G =	0	1	0	0	1	1	1
	0	0	1	0	1	1	0
	0	0	0	1	0	1	1

Linear Systematic Block Code:

An (*n*, *k*) linear systematic code is completely specified by a k × n generator matrix of the following form.

$$G = \begin{bmatrix} \overline{g}_{\theta} \\ \overline{g}_{1} \\ \vdots \\ \overline{g}_{k-1} \end{bmatrix} = [I_{k}P]$$

where I_{k} is the form of menticy in a trix.

Linear Block Codes

- the number of codeworde is 2^k since there are 2^k distinct messages.
- The set of vectors {g_i} are linearly independent since we must have a set of unique codewords.
- linearly independent vectors mean that no vector g_i can be expressed as a linear combination of the other vectors.
- These vectors are called baises vectors of the vector space C.
- The dimension of this vector space is the number of the basis vector which are *k*.
- $G_i \in C \rightarrow$ the rows of G are all legal codewords.

Hamming Weight

the minimum hamming distance of a linear block code is equal to the minimum hamming weight of the nonzero code vectors.

Since each $g_i \in C$, we must have $W_h(g_i) \ge d_{min}$ this a necessary condition but not sufficient.

Therefore, if the hamming weight of one of the rows of G is less than d_{min}, →d_{min} is not correct or G not correct.

Generator Matrix

- All 2^k codewords can be generated from a set of k linearly independent codewords.
- The simplest choice of this set is the *k* codewords corresponding to the information sequences that have a single nonzero element.
- <u>Illustration</u>: The generating set for the (7,4) code: 1000 ===> 1101000 0100 ===> 0110100 0010 ===> 1110010 0001 ===> 1010001

Generator Matrix (cont'd)

Every codeword is a linear combination of these 4 codewords.

That is: **c** = **m**_**G**, where

$$\mathbf{G} = \begin{vmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ \vdots \\ k \times (n-k) & \vdots \\ k \times k \end{vmatrix} = \begin{bmatrix} \mathbf{P} \mid \mathbf{I}_k \end{bmatrix}$$

• Storage requirement reduced from $2^{k}(n+k)$ to k(n-k).

Parity-Check Matrix

- For $\mathbf{G} = [\mathbf{P} | \mathbf{I}_k]$, define the matrix $\mathbf{H} = [\mathbf{I}_{n-k} | \mathbf{P}^T]$ (The size of \mathbf{H} is $(n-k)\mathbf{x}n$).
- It follows that $\mathbf{G}\mathbf{H}^{\mathsf{T}} = \mathbf{0}$.
- Since $\mathbf{c} = \mathbf{m}\mathbf{G}$, then $\mathbf{c}\mathbf{H}^{\mathsf{T}} = \mathbf{m}\mathbf{G}\mathbf{H}^{\mathsf{T}} = \mathbf{0}$. $\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$

Encoding Using H Matrix

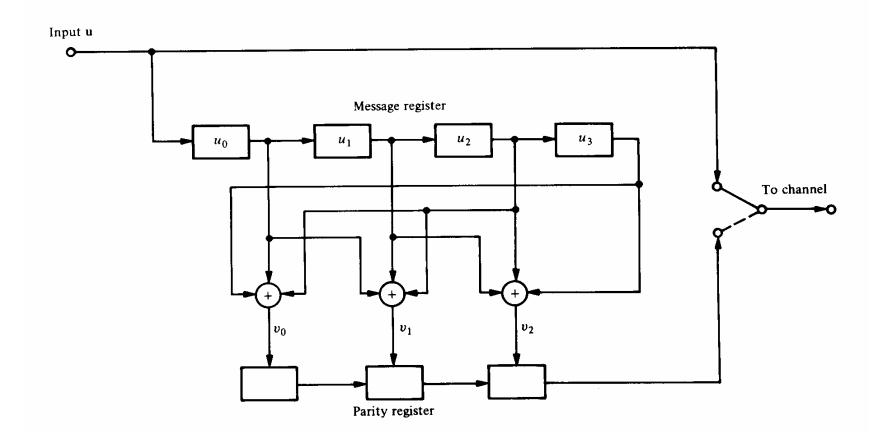
$$\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 & c_6 & c_7 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \mathbf{0}$$

$$c_{1} + c_{4} + c_{6} + c_{7} = 0 \qquad c_{1} = c_{4} + c_{6} + c_{7}$$

$$c_{2} + c_{4} + c_{5} + c_{6} = 0 \implies c_{2} = c_{4} + c_{5} + c_{6}$$

$$c_{3} + c_{5} + c_{6} + c_{7} = 0 \qquad c_{3} = c_{5} + c_{6} + c_{7}$$

Encoding Circuit



The Encoding Problem (Revisited)

 Linearity makes the encoding problem a lot easier, yet:

How to construct the G (or H) matrix of a code of minimum distance d_{\min} ?

 The general answer to this question will be attempted later. For the time being we will state the answer to a class of codes: the Hamming codes.

Hamming Codes

• Hamming codes constitute a class of single-error correcting codes defined as:

 $n = 2^{r} - 1, k = n - r, r > 2$

- The minimum distance of the code $d_{\min} = 3$
- Hamming codes are perfect codes.
- <u>Construction rule</u>:

The H matrix of a Hamming code of order *r* has as its columns all non-zero *r*-bit patterns.

Size of H: $r x(2^r-1)=(n-k)xn$