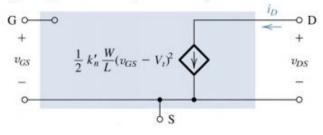
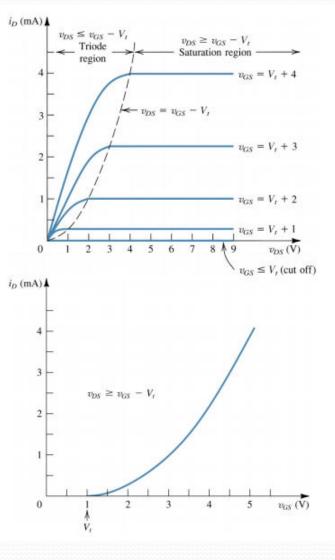

Unit 1 Current-Voltage Characteristics

Current-Voltage Characteristics

Circuit symbol

n-channel enhancement-mode MOSFET


The current-voltage characteristics


Cut-off region: $(v_{GS} \le V_t)$

 $\rightarrow i_D = 0$

□ Triode region:
$$(v_{GS} > V_t \text{ and } v_{DS} < v_{GS} - V_t)$$

⇒ $i_D = \mu_n C_{ax} \frac{W}{L} [(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2]$
□ Saturation: $(v_{GS} > V_t \text{ and } v_{DS} \ge v_{GS} - V_t)$
⇒ $i_D = \frac{1}{2} \mu_n C_{ax} \frac{W}{L} (v_{GS} - V_t)^2$

□ large-signal model (saturation)

Derivation of the I-V relationship

□ Induced charge in the channel due to MOS capacitor: $Q_1(x) = -C_{ax}[v_{ax} - V_1 - v(x)]$

Equivalent resistance dR along the channel:

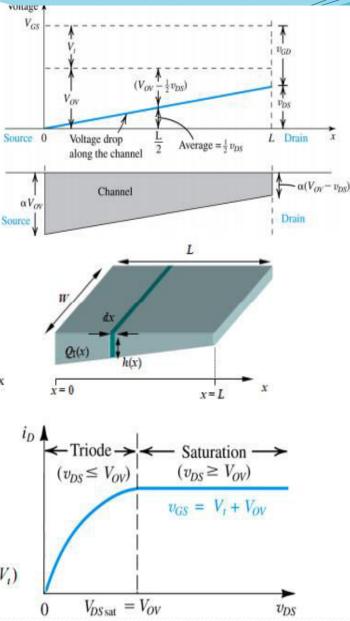
$$dR = \frac{dx}{qn(x)\mu_n h(x)W} = \frac{dx}{\mu_n W Q_1(x)}$$

□ I-V derivations:

$$dv = i_{D}dR = \frac{i_{D}dx}{\mu_{n}WQ_{I}(x)} = \frac{i_{D}dx}{\mu_{n}C_{ox}W[v_{GS} - V_{I} - v(x)]}$$

$$\int_{0}^{v_{DS}} \mu_{n}C_{ox}W[v_{GS} - V_{I} - v(x)]dv = \int_{0}^{L} i_{D}dx$$

$$i_{D} = \mu_{n}C_{ox}\frac{W}{L}[(v_{GS} - V_{I})v_{DS} - \frac{1}{2}v_{DS}^{2}]$$

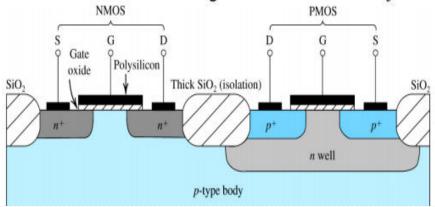

Process transconductance parameter (μ A/V²): $k'_n = \mu_n C_{ox}$

Aspect ratio: W/L

Transconductance parameter ($\mu A/V^2$): $k_n = \mu_n C_{ox}(W/L)$ Drain current of MOSFETs:

Triode region: $i_D = k_n [(v_{GS} - V_t)v_{DS} - \frac{1}{2}v_{DS}^2]$ Saturation region: $i_{Dsat} = \frac{1}{2}k_n (v_{GS} - V_t)^2$

• On-resistance (channel resistance for small v_{DS}): $r_{DS} = 1/k_n(v_{GS} - V_i)$

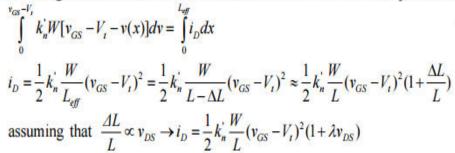


The p-channel enhancement-type MOSFET

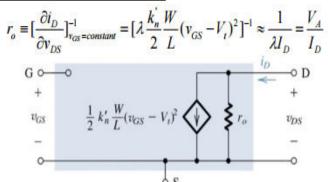
- \square *p*-channel enhanced-type MOSFETs are fabricated on *n*-type substrate with *p*⁺ source and *p*⁺ drain.
- □ Normally, source is connected to high voltage and drain is connected to low voltage.
- □ As a negative voltage applies to gate electrode, negative charges accumulate in gate and the resulting field pushes electrons in *n*-type substrate away from the surface, leaving behind a carrier-depletion region.
- \Box As gate voltage exceeds a negative **threshold voltage** V_t , holes start to accumulate on the substrate surface.
- The induced p region (inversion layer) thus forms a p-type channel for current flow from source to drain.
- \Box Negative gate voltage is required to induce the channel \rightarrow enhancement-type MOSFET.

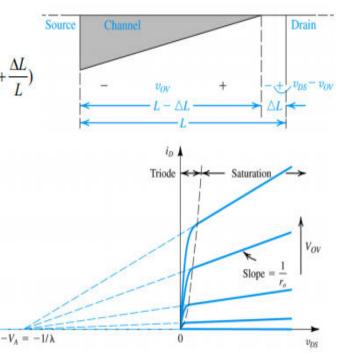
Complementary MOS (CMOS)

- CMOS technology employs both PMOS and NMOS devices.
- □ If substrate is *p*-type, PMOS transistors are formed in *n* well (*n*-type body needed).
- \Box If substrate is *n*-type, NMOS transistors are formed in *p* well (*p*-type body needed).
- The substrate and the well are connected to voltages which reverse bias the junctions for device isolation.


Channel length modulation

 \Box Channel length modulation: the channel pinch-off point moves slightly away from drain as $v_{DS} > v_{DSsat}$.


 \Box The effective channel length (L_{eff}) reduces with v_{DS} .

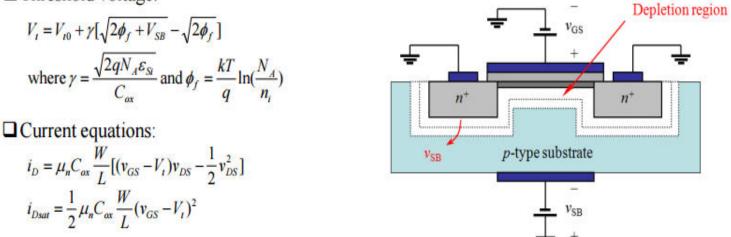

Electrons travel to pinch-off point will be swept to drain by electric field.

 \Box The length accounted for conductance in the channel is replaced by L_{eff} :

Finite output resistance

 $\Box V_A$ (Early voltage) = $1/\lambda$ is proportional to channel length: $V_A = V'_A L$ $\Box V'_A$ is process-technology dependent with a typical value from 5 ~ 50 V/µm.

 \Box Due to the dependence of i_D on v_{DS} , MOSFET shows finite output resistance in saturation region.


The body effect

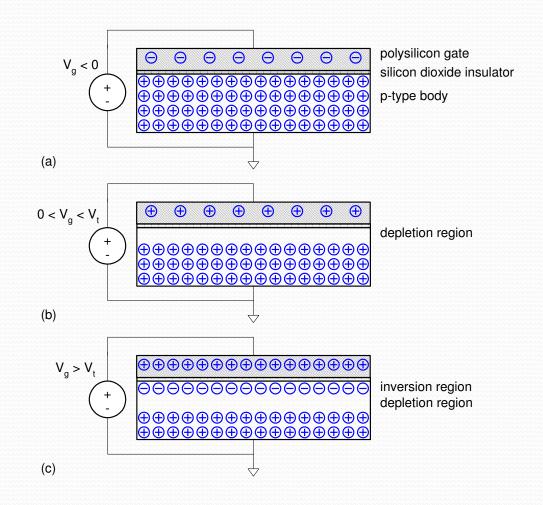
The BS and BD junction should be reverse biased for the device to function properly.

□ Normally, the body of a *n*-channel MOSFET is connected to the most negative voltage.

The depletion region widens in BS and BD junctions and under the channel as V_{SB} increases.
 Body effect: V_t increases due to the excess charge in the depletion region under the channel.
 The body effect can cause considerable degradation in circuit performance.

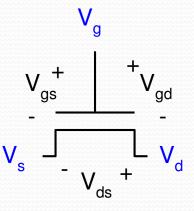
Threshold voltage:

Temperature effect

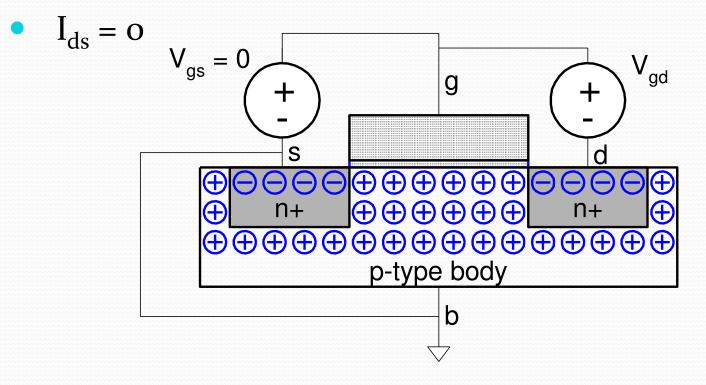

 $\Box V_t$ decreases by ~2mV for every 1°C rise $\rightarrow i_D$ increases with temperature.

 $\Box k'_{n}$ decreases with temperature $\rightarrow i_{D}$ decreases with increasing temperature.

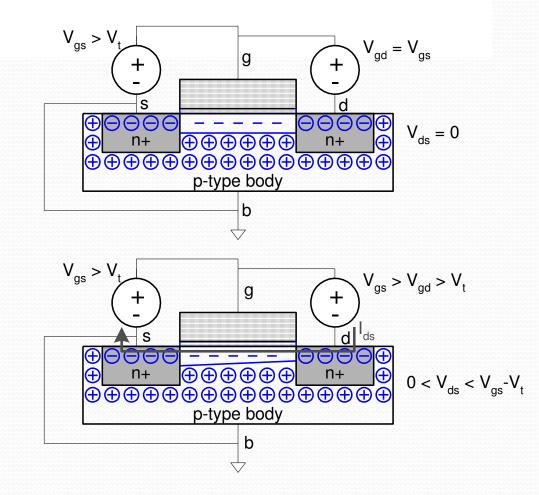
 \Box For a given bias voltage, the overall observed effect of a temperature increase is a decrease in i_D .


MOS Capacitor

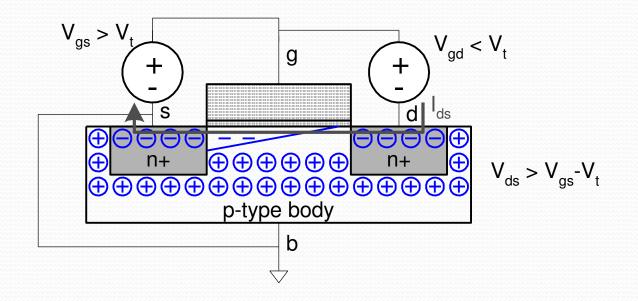
- Gate and body form MOS capacitor
- Operating modes
 - Accumulation
 - Depletion
 - Inversion


Terminal Voltages Mode of operation depends on V_g, V_d, V_s

- $V_{gs} = V_g V_s$
- $V_{gd} = V_g V_d$
- $V_{ds} = V_d V_s = V_{gs} V_{gd}$
- Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \ge o$
- NMOS body is grounded. First assume source is o too.
- Three regions of operation
 - Cutoff
 - Linear
 - Saturation


NMOS Cutoff

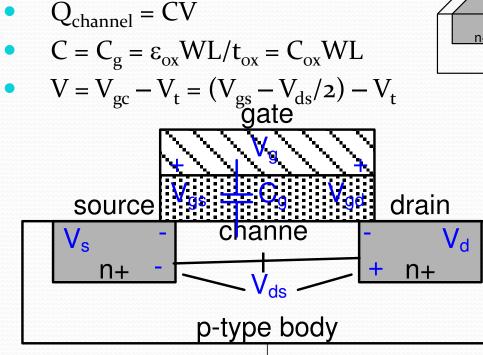
No channel

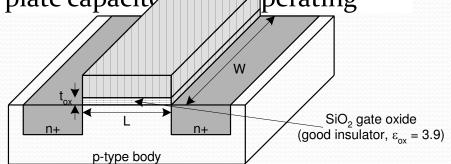

NMOS Linear

- Channel forms
- Current flows from d to s
 - e⁻ from s to d
- I_{ds} increases with V_{ds}
- Similar to linear resistor

NMOS Saturation

- Channel pinches off
- I_{ds} independent of V_{ds}
- We say current saturates
- Similar to current source




I-V Characteristics

- In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

Channel Charge

- MOS structure looks like parallel plate capacito perating in inversion
 - Gate oxide channel

 $V_{gc} = (V_{gs} + V_{gd})/2$ $= V_{gs} - V_{ds}/2$

Carrier velocity

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $v = \mu E (\mu \text{ is called mobility})$
- $E = V_{ds}/L$
- Time for carrier to cross channel:

• t = L / v

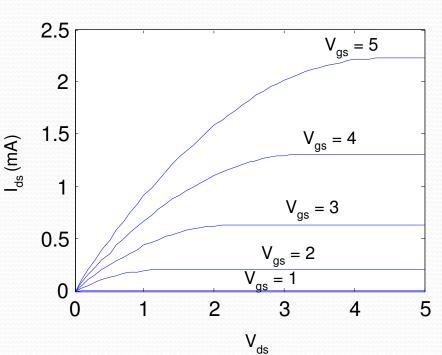
NMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time *t* each carrier takes to cross $I_{ds} = \frac{Q_{\text{channel}}}{t}$ $= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \qquad \beta = \mu C_{\text{ox}} \frac{W}{L}$ $= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$

NMOS Saturation I-V

- If V_{gd} < V_t, channel pinches off near drain
 When V_{ds} > V_{dsat} = V_{gs} V_t
- Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$


$$=\frac{\beta}{2}\left(V_{gs}-V_{t}\right)^{2}$$

NMOS I-V Summary

• Shockley 1st order transistor models (long-channel) $I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$

Example We consider a 0.6 μm process

- From AMI Semiconductor
- $t_{ox} = 100 \text{ Å}$
- µ = 350 cm²/V*s
- $V_t = 0.7 V$
- Plot I_{ds} vs. V_{ds} • $V_{gs} = 0, 1, 2, 3, 4, 5$
 - Use W/L = $4/2 \lambda$

$$\beta = \mu C_{ox} \frac{W}{L} = (350) \left(\frac{3.9 \bullet 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}} \right) \left(\frac{W}{L} \right) = 120 \frac{W}{L} \mu A / V^2$$

PMOS I-V

- All dopings and voltages are inverted for PMOS
- Mobility μ_p is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
 - 120 cm²/V*s in AMI 0.6 μm process
- Thus PMOS must be wider to provide same current
 - In this class, assume $\mu_n / \mu_p = 2$