Unit 2 MOS Inverters

Propagation Delay, T_p D(Dynamic Behavior)

Propagation Delay, T_p

Defines how quickly output is affected by input
Measured between 50% transition from input to output
t_{pLH} defines delay for output going from low to high
t_{pHL} defines delay for output going from high to low
Overall delay, t_p, defined as the *average* of t_{pLH} and t_{pHL}

Dynamic Behavior

- Rise and fall time, T_r and T_f
- Defines slope of the signal
- Defined between the 10% and 90% of the signal swing Propagation delay and rise and fall times affected by the
- fan-out due to larger capacitance loads

Delay Definitions

The Ring Oscillator

- •A standard method is needed to measure the gate delay
- It is based on the *ring oscillator*
- $2Nt_p >> t_f + t_r$ for proper operation

Ring Oscillator

 $T = 2 \times t_p \times N$

Voltage Transfer Characteristic

CMOS Inverter Load Characteristics

PMOS Load Lines

V_{DD}

CMOS Inverter Load Lines

0.25um, W/L_n = 1.5, W/L_p = 4.5, V_{DD} = 2.5V, V_{Tn} = 0.4V, V_{Tp} = -0.4V

CMOS Inverter VTC

	Cutoff	Linear	Saturation
pMOS	$V_{in} - V_{DD} = V_{GS} > V_T$	$V_{in} - V_{DD} = V_{GS} < V_T$ $V_{in} - V_{out} = V_{GD} < V_T$	$V_{in} - V_{DD} = V_{GS} > V_T$ $V_{in} - V_{out} = V_{GD} > V_T$
nMOS	$V_{in} = V_{GS} < V_{T}$	$V_{in} = V_{GS} > V_T$ $V_{in} - V_{out} = V_{GD} > V_T$	$V_{in} = V_{GS} > V_T$ $V_{in} - V_{out} = V_{GD} < V_T$

Regions of operations For nMOS and pMOS In CMOS inverter

CMOS Inverter Load Characteristics

- For valid dc operating points:
 - current through NMOS = current through PMOS
 - •=> dc operating points are the intersection of load lines
- All operating points located at high or low output levels
 - •=> VTC has narrow transition zone
 - high gain of transistors during switching
 - transistors in saturation
 - •high transconductance (g_m)
 - high output resistance (voltage controlled current source)

Switching Threshold

V_M where V_{in} = V_{out} (both PMOS and NMOS in saturation since V_{DS} = V_{GS})

$$V_{M} \approx rV_{DD}/(1 + r)$$
 where $r = k_{p}V_{DSATp}/k_{n}V_{DSATn}$

- Switching threshold set by the ratio r, which compares the relative driving strengths of the PMOS and NMOS transistors
- Want $V_M = V_{DD}/2$ (to have comparable high and low noise margins), so want $r \approx 1$

$$\frac{(W/L)_{p}}{(W/L)_{n}} \underbrace{k_{n}'V_{DSATn}(V_{M}-V_{Tn}-V_{DSATn}/2)}_{V_{DSATp}(V_{DD}-V_{M}+V_{Tp}+V_{DSATp}/2)}$$

Switch Threshold Example

 In 0.25 μm CMOS process, using parameters from table, V_{DD} = 2.5V, and minimum size NMOS ((W/L)_n of 1.5)

	$V_{T0}(V)$	$\gamma(V^{0.5})$	V _{DSAT} (V)	k'(A/V ²)	λ(V ⁻¹)
NMOS	0.43	0.4	0.63	115 x 10 ⁻⁶	0.06
PMOS	-0.4	-0.4	-1	-30 x 10 ⁻⁶	-0.1

$$\frac{(W/L)_{p}}{(W/L)_{n}} = \frac{115 \times 10^{-6}}{-30 \times 10^{-6}} \times \frac{0.63}{-1.0} \times \frac{(1.25 - 0.43 - 0.63/2)}{(1.25 - 0.4 - 1.0/2)} = 3.5$$

 $(W/L)_p = 3.5 \times 1.5 = 5.25$ for a V_M of 1.25V

Simulated Inverter V_M 1.5 – 1.4 \Box V_M is relatively insensitive to 1.3 variations in device ratio 1.2 • setting the ratio to 3, 2.5 V_M (V) and 2 gives V_M 's of 1.22V, 1.1 1.18V, and 1.13V 1 Increasing the width of the 0.9 PMOS moves V_M towards V_{DD} 0.8 ~3.4 0.1 10 $(W/L)_{p}/(W/L)_{n}$

Note: x-axis is semilog

Noise Margins Determining V_{IH} and V_{IL}

By definition, V_{IH} and V_{IL} are where $dV_{out}/dV_{in} = -1$ (= gain)

$$NM_{H} = V_{DD} - V_{IH}$$
$$NM_{L} = V_{IL} - GND$$

Approximating: $V_{IH} = V_M - V_M/g$ $V_{IL} = V_M + (V_{DD} - V_M)/g$

So high gain in the transition region is very desirable

CMOS Inverter VTC from Simulation

0.25um, $(W/L)_p/(W/L)_n = 3.4$ $(W/L)_n = 1.5$ (min size) $V_{DD} = 2.5V$

 $V_M \approx$ 1.25V, g = -27.5

 $V_{IL} = 1.2V, V_{IH} = 1.3V$ $NM_L = NM_H = 1.2$

(actual values are $V_{IL} = 1.03V$, $V_{IH} = 1.45V$ $NM_L = 1.03V$ & $NM_H = 1.05V$)

Output resistance low-output = $2.4k\Omega$ high-output = $3.3k\Omega$

Gain Determinates

Gain is a function of the current slope in the saturation region, for $V_{in} = V_M$

$$g \approx \frac{(1+r)}{(V_{M}-V_{Tn}-V_{DSATn}/2)(\lambda_{n} - \lambda_{p})}$$

✓ Determined by technology parameters, especially λ .

✓ Only designer influence through supply voltage and V_M (transistor sizing).

Impact of Process Variation

Pprocess variations (mostly) cause a shift in the switching threshold

Scaling the Supply Voltage

Device threshold voltages are kept (virtually) constant

Device threshold voltages are kept (virtually) constant

Propagation Delay

Switch Model of Dynamic Behavior

What is the Inverter Driving?

CMOS Inverter Propagation Delay Approach 1

CMOS Inverter Propagation Delay Approach 2

CMOS Inverter: Transient Response

How can the designer build a fast gate?

- • $t_{pHL} = f(R_{on} * C_L)$
- •Keep output capacitance, C_L, small
 - Iow fan-out
 - •keep interconnections short (floor-plan your layout!)
- Decrease on-resistance of transistor
 - •increase W/L ratio
 - make good contacts (slight effect)

MOS Transistor Small Signal Model

	g _m	r _o
linear	kV _{DS}	$[k(V_{GS} V_T V_{DS})]^{-1}$
saturation	$k(V_{GS} V_T)$	1/N _D

Determining V_{IH} and V_{IL}

At
$$V_{IH}$$
 (V_{IL}): $\frac{\partial V_{out}}{\partial V_{in}} = -1$

small-signal model of inverter

 V_{IH} and V_{IL} are based on derivative of VTC equal to -1

$$g = \frac{v_{out}}{v_{in}} = -(g_{mn} + g_{mp}) \times (r_{on} || r_{op}) = -1$$

Transient Response

Inverter Transient Response

Delay as a function of V_{DD}

Sizing Impacts on Delay

The majority of improvement is obtained for S = 5.

Sizing factors larger than 10 barely yields any extra gain (and cost significantly more

PMOS/NMOS Ratio Effects

 β of 2.4 (= 31 k Ω /13 k Ω) gives symmetrical response

 β of 1.6 to 1.9 gives optimal performance

Input Signal Rise/Fall Time

- The input signal changes gradually (and both PMOS and NMOS conduct for a brief time).
- This affects the current available for charging/discharging C_L and impacts propagation delay.

- t_p increases linearly with increasing input rise time, t_r, once t_r > t_p
- t_r is due to the limited driving capability of the preceding gate

with a fan-out of a single gate