Unit 2
MOS Inverters



* DC Response: V

DC Response

vs. V. for a gate

out
Ex: Inverter
— WhenV, =0 -> V..t = Vpp
— WhenV, =V,, -> V=0
— In between, V_,, depends on

transistor size and current

By KCL, must settle such that

lysn = s

We could solve equations

But graphical solution gives more insight




Transistor Operation

e Current depends on region of transistor behavior

* ForwhatV, andV_, are nMOS and pMOS in
— Cutoff?
— Linear?
— Saturation?



* Make pMOS is wider than nMOS such that 3, = 8,
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Load Line Analysis

* ForagivenV,:
— Plot I, lysp VS Vour

— V,_, must be where |currents| are equal in
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Load Line Analysis
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Load Line Analysis

¢« V., =0.2Vp,
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Load Line Analysis

* V.. =0.4Vy,
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Load Line Analysis

¢ V. = 0.6V,
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Load Line Analysis

* V. =0.8V,,
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Load Line Analysis
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DC Transfer Curve

plot

* Transcribe points onto V.  vs. V
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* Revisit transistor operating regions

Operating Regions

Region nMOS pMOS
A Cutoff Linear
B Saturation | Linear
C Saturation | Saturation
D Linear Saturation
E Linear Cutoff
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Beta Ratio

* If B,/ B, # 1, switching point will move from V;/2
e (Called skewed gate
e Other gates: collapse into equivalent inverter
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Noise Margins

* How much noise can a gate input see before it does not
recognize the input?
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Logic Levels

* To maximize noise margins, select logic levels at

— unity gain point of DC transfer characteristic
v
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Transient Response

 DCanalysis tellsusV_, if V., is constant
(t) if V. (t) changes

— Requires solving differential equations

out

* Transient analysis tells us V

out

* |Inputis usually considered to be a step or ramp
— From 0 to V,or vice versa



Inverter Step Response

V. (1) =
V.. (t <t,)=
Vour () _ ol

dt (5

* Ex: find step response of inverter driving load cap
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Inverter Step Response

V. (1) =u(t—1,)V,,
(1<t))=

OI/lZ

* Ex: find step response of inverter driving load cap
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Inverter Step Response

* Ex: find step response of inverter driving load cap

V., () =u(t—1)V,,
out (t <I ) VDD Vin(t) Vo t(t)
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Inverter Step Response

V., (1) = u(t _tO)VDD

* Ex: find step response of inverter driving load cap
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Inverter Step Response

* Ex: find step response of inverter driving load cap

V., (1) = u(t _tO)VDD
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Inverter Step Response

* Ex: find step response of inverter driving load cap
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Delay Definitions

t,qr: rising propagation delay

— From input to rising output crossing V/2
t,q: falling propagation delay

— From input to falling output crossing V/2
t,4: average propagation delay

— tog = (tog + togr)/2
t.:rise time

— From output crossing 0.2 V, to 0.8 V,
t.: fall time

— From output crossing 0.8 V, to 0.2 V,



Delay Definitions

* t.y: rising contamination delay

— From input to rising output crossing Vyy/2
* t_ falling contamination delay

— From input to falling output crossing Vyp/2
* t: average contamination delay

— 1:pd = (tcdr + tcdf)/2



Simulated Inverter Delay

Solving differential equations by hand is too hard

SPICE simulator solves the equations numerically
— Uses more accurate |-V models too!

But simulations take time to write
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Delay Estimation

We would like to be able to easily estimate delay

— Not as accurate as simulation

The step response usually looks like a 15t order RC response
with a decaying exponential.
Use RC delay models to estimate delay
— C = total capacitance on output node
— Use effective resistance R
— So thatt,, =RC
Characterize transistors by finding their effective R

— Depends on average current as gate switches



RC Delay Models

* Use equivalent circuits for MOS transistors
— ldeal switch + capacitance and ON resistance
— Unit nMOS has resistance R, capacitance C
— Unit pMOS has resistance 2R, capacitance C

e (Capacitance proportional to width
* Resistance inversely proportional to width
d
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Example: 3-input NAND

* A 3-input NAND with transistor widths chosen to achieve
effective rise and fall resistances equal to a unit inverter (R).
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Elmore Delay

* ON transistors look like resistors
* Pullup or pulldown network modeled as RC ladder
* Elmore delay of RC ladder
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Example: 2-input NAND

* Estimate worst-case rising and falling delay of 2-input NAND
driving h identical gates.
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Example: 2-input NAND

* Estimate rising and falling propagation delays of a 2-input
NAND driving h identical gates.
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Example: 2-input NAND

* Estimate rising and falling propagation delays of a 2-input
NAND driving h identical gates.
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Example: 2-input NAND

* Estimate rising and falling propagation delays of a 2-input

NAND driving h identical gates.
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Example: 2-input NAND

* Estimate rising and falling propagation delays of a 2-input
NAND driving h identical gates.
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Example: 2-input NAND

* Estimate rising and falling propagation delays of a 2-input

NAND driving h identical gates.
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Example: 2-input NAND

* Estimate rising and falling propagation delays of a 2-input
NAND driving h identical gates.
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Delay Components

* Delay has two parts

— Parasitic delay
* 6or/7RC
* Independent of load

— Effort delay
« 4h RC
* Proportional to load capacitance



Contamination Delay

Best-case (contamination) delay can be substantially less than
propagation delay.

Ex: If both inputs fall simultaneously
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