Unit 3 Combinational MOS Logic Circuits

Introduction

A sequential circuit consists of a *feedback path*, and employs some *memory elements*.

External inputs

Sequential circuit = Combinational logic + Memory Elements

Sequential Circuits

- Definitions
- Latches
 - Set-Reset SR
 - The D Latch
- Material from section 5-1 and 5-2 of text

Combination Logic

- Logic that performs some transformation operation on the inputs to produce outputs which are simple logic functions of the input.
- The outputs reflect a function of the current values on the inputs.

• There is not the capability to hold the value of the input.

Sequential Logic

- Logic elements capable of storing a logic value.
- Sequential circuits are those circuits that employ these elements.

• Will be looking at the methodologies for sequential circuit design.

Definitions

- Inputs All the outside logic signal inputs to the circuit. Typically, the clock is not consider part of the signal inputs of the circuit.
- **Outputs** The logic signal outputs.
- **Present State** the logic value of all the state variables of the system. These are stored in the state memory.
- Next State Given the present state and the current values on the inputs, the next state represents the next logic state the circuit will transition to on the next clock.

The SR Latch

• The SR (Set-Reset) Latch

• And its operation

	S	R	Q	Q′	
:	1	0	1	0	Set Q
	0	0	1	0	Hold
	0	1	0	1	Clear
	0	0	0	1	Hold
	1	1	0	0	Undefined

The waveform

A simulation waveform would look something like this

S-R Latch

- Complementary outputs: Q and Q'.
- When *Q* is HIGH, the latch is in *SET* state.
- When *Q* is LOW, the latch is in *RESET* state.
- For active-HIGH input S-R latch (also known as NOR gate latch),

R=HIGH (and *S*=LOW) \Rightarrow RESET state *S*=HIGH (and *R*=LOW) \Rightarrow SET state both inputs LOW \Rightarrow no change both inputs HIGH \Rightarrow *Q* and *Q*' both LOW (invalid)!

S-R Latch

- For active-LOW input S'-R' latch (also known as NAND gate latch), R'=LOW (and S'=HIGH) ⇔ RESET state S'=LOW (and R'=HIGH) ⇔ SET state both inputs HIGH ⇔ no change both inputs LOW ⇔ Q and Q' both HIGH (invalid)!
- Drawback of S-R latch: invalid condition exists and must be avoided.

S-R Latch

Active-HIGH input S-R latch

Active-LOW input S'-R' latch

Gated S-R Latch

■ S-R latch + enable input (EN) and 2 NAND gates \rightarrow gated S-R latch.

Gated S-R Latch

- Outputs change (if necessary) only when EN is HIGH.
- Under what condition does the invalid state occur?
- Characteristic table:

EN=1						
	Q (t)	S	R	Q(t+1)		
	0	0	0	0		
	0	0	1	0		
	0	1	0	1		
	0	1	1	indeterminate		
	1	0	0	1		
	1	0	1	0		
	1	1	0	1		
	1	1	1	indeterminate		

S	R	Q(t+1)				
0	0	Q(t)	No change			
0	1	0	Reset			
1	0	1	Set			
1	1	indeterminate				
Q(t+1) = S + R'.Q						

S.R = 0

Other implementations of the SR

• With NAND Gates

 And adding a control input

