Unit 3 Combinational MOS Logic Circuits

SR LATCH

Sequential Logic Circuits

- So far we have only considered circuits where the output is purely a function of the inputs
- With sequential circuits the output is a function of the values of past and present inputs

Sequential Circuits - Aims

- To be able to differentiate between the various types of bistable circuits (and know when it is appropriate to use one type or another)
- To describe the structure and operation of simple registers, shift registers and binary counters
- To sketch and explain the features of a timing diagram for an n-bit register
- To be able to connect an IC (integrated circuit) counter to create a modulo-n counter or to cascade several counters to extend the range
- To generate a state transition diagram from the description of a problem, or to follow the flow of a given state transition diagram
- To apply the general sequential machine design method to sequential circuits such as counters

Latches and Flip Flops

- Latches
 - SR latch
 - Clocked SR latch
 - D Latch
- Flip flops
 - Master-slave
 - Edge triggered
 - JK

Sequential circuit concepts

•The addition of a memory device to a combinational circuit allows the output to be fed back into the input:

Synchronous and Asynchronous

•With synchronous circuits a clock pulse is used to regulate the feedback, input signal only enabled when clock pulse is high – acts like a "gate" being opened.

Latches

The SR Latch – Consider the following circuit

.

SR Latch operation

- Assume some previous operation has Q as a 1
- Assume R and S are initially inactive

Circuit

Now assume R goes first to 1 then returns to 0, what happens:

Reset goes active

Reset goes in-active

In that process, Q changed from 1 to 0. Further signals on R will have no effect.

Set the latch

•Similar sequences can be followed to show that setting S to 1 then 0 – activating S – will set Q to a 1 stable state.

•When R and S are activated simultaneously both outputs will go to a 0

When R and S now go inactive 0, both inputs at both gates are 0 and both gates output a 1.

This 1 fedback to the inputs drives the outputs to 0, again both inputs are 0 and so on and so on and so on and so on and so on.

Metastable state

 In a perfect world of perfect electronic circuits the oscillation continues indefinitely.

•However, delays will not be consistent in both gates so the circuit will collapse into one stable state or another.

R

0

This collapse is unpredictable.

Thus our function table:

- S Q_{n+1} 0 0 Q_n 1 1 0 0 1 1 ?
 - Future output = present output
 - Set the latch
 - Reset the latch
 - Don't know

Latches

- The SR Latch
 - NAND Form produces similar result from inverted inputs

You ought to be able to figure this one out yourself!

Application of the SR Latch

 An important application of SR latches is for recording short lived events

The Clocked SR Latch

- In some cases it is necessary to disable the inputs to a latch
- This can be achieved by adding a control or clock input to the latch
 - When C = 0 R and S inputs cannot reach the latch
 - Holds its stored value
 - When C = 1 R and S inputs connected to the latch
 - Functions as before

Clocked SR Latch

Propagation Delay, set-up and hold (for transparent circuits)

•Propagation delay:

•Time taken for any change at inputs to affect outputs (change on D to change on Q).

•Setup time:

•Data on inputs D must be held steady for at least this time before the clock changes.

•Hold time:

•Data on inputs D must be held steady for at least this time after the clock changes.

Latches - Summary

- Two cross-coupled NOR gates form an SR (set and reset) latch
- A clocked SR latch has an additional input that controls when setting and resetting can take place
- A D latch has a single data input
 - the output is held when the clock input is a zero
 - the input is copied to the output when the clock input is a one
- The output of the clocked latches is transparent
- The output of the clocked D latch can be represented by the following behaviour