UNIT 5: Low – Power CMOS Logic Circuits

Ad Hoc Testable Design Techniques

 One way to increase the testability is to make nodes more accessible at some cost by physically inserting more access circuits to the original design.

Ad hoc testable design techniques:

- Partition-and-Mux Technique
- Initialize Sequential Circuit
- Disable Internal Oscillators and Clocks
- Avoid Asynchronous Logic and Redundant Logic
- Avoid Delay-Dependent Logic

Partition-and-Mux Technique

- Since the sequence of many serial gates, functional blocks, or large circuits are difficult to test, such circuits can be partitioned.
- Multiplexors (muxes) can be inserted such that some of the primary inputs can be fed to partitioned parts through multiplexers with accessible control signals.
- With this design technique, the number of accessible nodes can be increased and the number of test patterns can be reduced.
- A case in point would be the 32-bit counter. Dividing this counter into two 16-bit parts would reduce the testing time in principle by a factor of **215**.
- However, circuit partitioning and addition of multiplexers may increase the chip area and circuit delay.
- This practice is not unique and is similar to the divide-and-conquer approach to large, complex problems.

Partition-and-mux method for large circuits.

Initialize Sequential Circuit

- When the sequential circuit is powered up, its initial state can be a random, unknown state.
- In this case, it is not possible to start the test sequence correctly.
- The state of a sequential circuit can be brought to a known state through *initialization*.
- In many designs, the initialization can be easily done by connecting asynchronous preset or clear-input signals from primary or controllable inputs to flip-flops or latches.

Disable Internal Oscillators and Clocks

- To avoid synchronization problems during testing, internal oscillators and clocks should be disabled.
- For example, rather than connecting the circuit directly to the on-chip oscillator, the clock signal can be ORed with a disabling signal followed by an insertion of a testing signal as shown in Fig.

Avoid synchronization problems via disabling of the oscillator.

Avoid Asynchronous Logic and Redundant Logic

- The redundant node cannot be observed since the primary output value cannot be made dependent on the value of the redundant node.
- Hence, certain faults on the redundant node cannot be tested or detected.
- Figure shows that the bottom NAND2 gate is redundant and the stuck-at- fault on its output line cannot be detected.
- If a fault is undetectable, the associated line or gate can be removed without changing the logic function.

(a) A redundant logic gate example. (b) Equivalent gate with redundancy removed

Avoid Delay-Dependent Logic

- Chains of inverters can be used to design in delay times and use AND operation of their outputs along with inputs to generate pulses.
- Most automatic test pattern generation (ATPG) programs do not include logic delays to minimize the complexity of the program.
- As a result, such delay-dependent logic is viewed as redundant combinational logic, and the output of the reconvergent gate is always set to logic 0, which is not correct.
- Thus, the use of delay-dependent logic should be avoided in design for testability.

A pulse-generation circuit using a delay chain of three inverters

