Mobile Radio Propagation Large-Scale Path Loss
Unit-1
4.1 Introduction to Radio Wave Propagation

- Cellular systems operate in urban areas where there is no direct line-of-sight path between the transmitter and receiver.
- Presence of high rise buildings causes diffraction loss
• Due to multiple reflections from various objects, the electromagnetic waves travel along different paths of varying lengths.
• Interaction between these waves causes multipath fading at a specific location
• Strength of waves decrease as distance b/w transmitter and receiver (T-R) increases.
• Propagation model predicts the average received signal strength at a given distance from a transmitter.
• Propagation model estimate the radio coverage area of a transmitter and are known as *large-scale* propagation models.
4.1 Introduction to Radio Wave Propagation

- Electromagnetic wave propagation
 - reflection
 - diffraction
 - scattering

- Urban areas
 - No direct line-of-sight
 - high-rise buildings causes severe diffraction loss
 - multipath fading due to different paths of varying lengths
• Large-scale propagation models predict the mean signal strength for an arbitrary T-R separation distance.

• Small-scale (fading) models characterize the rapid fluctuations of the received signal strength over very short travel distance or short time duration.
• Small-scale fading: rapidly fluctuation
 – sum of many contributions from different directions with different phases
 – random phases cause the sum varying widely. (ex: Rayleigh fading distribution)
• Local average received power is predicted by large-scale model (measurement track of 5 to 40)