SYLLABUS

	NEC 701 OPTICAL COMMUNICATION	3 1 0
Unit	Topics	Lectures
Ι	Overview of optical fiber communication: The general system, Advantages of optical fiber communication. Optical spectral band.	10
	Optical Fiber waveguides: Introduction, Ray theory transmission	
	Total internal reflection, acceptance angle, numerical aperture, skew rays.	
	Electromagnetic mode theory for optical propagation: Electromagnetic waves,	
	modes in a planar guide, phase and group velocity, phase shift with total	
	internal reflection and the evanescent field, goos hanchen shift.	
II	Cylindrical Fiber: modes, mode coupling, step index fibers Graded index	10
	fibers, Single mode Fiber: Cut-off wavelength, Mode field diameter and spot	
	size, effective refractive index, Group delay and mode delay factor, The	
	Gaussian approximation, equivalent step index methods.	
	Signal distortion in optical fibers - Attenuation, Material Absorption, losses in	
	silica glass fibers; Intrinsic absorption, Extrinsic absorption. Linear scattering	
	losses; Ray light scattering, Mie scattering.	
	Non linear Scattering losses: fiber bending losses;	
	Dispersion, Chromatic dispersion: material dispersion, waveguide dispersion.	
	Intermodal dispersion: Multimode step index fiber, Multimode graded index	
	fiber.	
	Overall fiber dispersion Multimode fiber, Dispersion modified single mode	
	fibers ,Dispersion-shifted fiber, dispersion flatted fibers, nonzero-dispersion- shifted fibers (MZ DSE)	
	shifted fibers (MZ-DSF), Relarization: Eiber birefringence, polarization mode dispersion, polarization	
	Polarization: Fiber birefringence, polarization mode dispersion, polarization- maintaining fibers, Non linear effects: Scattering effects, Kerr effects.	
III	Optical sources - Light Emitting Diodes (LEDs): Structures, light source	6
111	materials, Quantum Efficiency on LED Power Modulation of a LED,	0
	Laser Diodes- models and threshold conditions, laser diode rate equations,	
	External quantum efficiency, resonant frequency, laser diode structures and	
	radiation patterns, single mode lasers modulation of laser diodes, laser lines.	
IV	Source to fiber power launching, Source Output patterns, Power coupling	6
- ·	calculation, Power launching versus wavelength, equilibrium numerical	-
	aperture.	
	Photo detectors: Physical principles of photodiodes: The PIN photo detector,	
	Avalanche photodiodes.	
	Photo detector Noise: Noise sources, signal to noise ration.	
	Detector Response time: Depletion layer photocurrent, response time	
	structure of in GaAs APDs, Temperature effect on Avalanche gain,	
	comparison of photo detectors.	
V	Optical receiver operation: Fundamental receiver operation: Digital signal	8
	transmission, error sources, front end amplifier.	
	Digital receiver performance: Probability of error receiver sensitivity, The	
	Quantum Unit.	
	Eye Diagram: Eye Pattern Features, BER and Q Factor Measurement	
	Coherent Detection: Fundamental concepts, Homodyne detection, heterodyne	
	detection, IBER comparisons.	
	Digital links: Point to point links, power penalties.	

- 1. John M. Senior, "Optical Fiber Communications", PEARSON, 3rd Edition, 2010.
- 2. Gerd Keiser, "Optical Fiber Communications", TMH, 4th Edition, 2008.

Reference Books:

- Govind P. Agrawal, "Fiber Optic Communication Systems", John Wiley, 3rd Edition, 2004.
 Joseph C. Plais, "Fiber Optic Communication", Pearson Education, 4th Ed, 2004.

NEC 702 DATA COMMUNICATION NETWORKS 2			
	NEC 702 DATA COMMUNICATION NETWORKS	<u>310</u>	
Unit	Topics	Lectures	
Ι	Communication problem and system models, components of communication	8	
	systems, communication channels and their characteristics, mathematical		
	models for communication channels, multiple access techniques, link budget		
	analysis		
II	Representation of deterministic and stochastic signals, random noise	8	
	characterization in communication systems, signal-to-noise ratio,		
	characterization of communication signals and systems: signal space		
	representations, representation of analog and digitally modulated signals,		
	spectral characteristics of modulated signals		
III	Optimal receivers: Receivers for signals corrupted by AWGN, Error	8	
	performance Analysis of receivers for memory-less modulation, optimal		
	receivers for modulation methods with memory, OFDM, MIMO, Source		
	Coding, Channel Coding (Hamming codes)		
IV	Error Control, Flow Control, Sliding Window Protocols, HDLC, PPP, Local	8	
	area networks: Ethernet, Fast Ethernet, Token Ring, Introduction to Gigabit		
	Ethernet and Wireless LANs; Hubs, bridges and switches		
V	MAC Layer	8	
	Static Channel Allocation in LANs and MANs, Dynamic Channel Allocation		
	in LANs and MANs, ALOHA, Carrier Sense Multiple Access Protocols,		
	Collision-Free Protocols, Limited-Contention Protocols, Wavelength Division		
	Multiple Access Protocols, Wireless LAN Protocols, IEEE Standard 802.3		
Tevt I			

- 1. Madhow, U., (2008), Fundamentals of Digital Communication, Cambridge University Press
- 2. Lathi, B. P. & Ding, Z., (2010), Modern Digital and Analog Communication Systems, **Oxford University Press**
- 3. Stallings, W., (2010), Data and Computer Communications, Pearson.
- 4. Andrew S. Tanenbaum, "Computer Networks" Pearson.
- 5. Ajit Pal, "Data Communication and Computer Networks", PHI
- 6. Dimitri Bertsekas, Robert G. Gallager, "Data Networks", Prentice Hall, 1992

	NEC 703 VLSI DESIGN	3 1 0
Unit	Topic	Lectures
Ι	Introduction: A Brief History, Preview, MOS Transistors, CMOS Logic, CMOS Fabrication and Layout, Design Partitioning, Logic Design, Circuit Design, Physical Design, Design Verification, Fabrication, Packaging and Testing.	8
II	Delay: Introduction, Transient Response, RC delay model, Linear Delay	8

	Model, Logical Effort of Paths, Timing Analysis Delay Models. Power: Introduction, Dynamic Power, Static Power	
III	Energy – Delay Optimization, Low Power Architectures. Interconnect: Introduction, Interconnect Modelling, Interconnect Impact, Interconnect Engineering, Logical Effort with Wires	8
IV	Dynamic logic circuits: Introduction, basic principle of pass transistor circuits, synchronous dynamic circuit techniques, dynamic CMOS circuit techniques, domino CMOS logic. Semiconductor memories: Introduction, DRAM, SRAM, ROM, flash memory.	
V	Low – Power CMOS Logic Circuits: Introduction, Overview of Power Consumption, Low – Power Design through voltage scaling, Estimation and Optimization of switching activity, Reduction of Switched Capacitance and Adiabatic Logic Circuits. Design for Testability: Introduction, Fault Types and Models, Controllability and Observability, Ad Hoc Testable Design Techniques, Scan Based and BIST Techniques	8

- Neil H.E.Weste, David Money Harris, "CMOS VLSI Design A circuits and Systems Perspective" Pearson, 4th Edition
- Sung-Mo Kang & Yosuf Leblebici, "CMOS Digital Integrated Circuits: Analysis & Design", TMH, 3rd Edition.

- D. A. Pucknell and K. Eshraghian, "Basic VLSI Design: Systems and Circuits", PHI, 3rd Ed., 1994.
- 2. W.Wolf, Modern VLSI Design: System on Chip, Third Edition, Pearson, 2002.

ELECTIVES III

	NEC 031 INFORMATION THEORY & CODING	3 1 0
Unit	Торіс	Lectures
I	Entropy : Entropy, Joint Entropy and Conditional Entropy, Relative Entropy and Mutual Information, Relationship Between Entropy and Mutual Information, Chain Rules for Entropy, Relative Entropy, and Mutual Information, Jensen's Inequality and Its Consequences, Log Sum Inequality and Its Applications, Data-Processing Inequality, Sufficient Statistics, Fano's Inequality	8
Π	 Asymptotic Equipartition Property: Asymptotic Equipartition Property Theorem, Consequences of the AEP: Data Compression, High-Probability Sets and the Typical Set Data Compression: Examples of Codes, Kraft Inequality, Optimal Codes, Bounds on the Optimal Code Length, Kraft Inequality for Uniquely Decodable Codes, Huffman Codes, Some Comments on Huffman Codes, Optimality of Huffman Codes, Shannon–Fano–Elias Coding 	8
III	Channel Capacity: Examples of Channel Capacity, 7.2 Symmetric Channels, Properties of Channel Capacity, Preview of the Channel Coding Theorem, Definitions, Jointly Typical Sequences, Channel Coding Theorem	8
IV	Block Codes Digital communication channel, Introduction to block codes, Single-parity- check codes, Product codes, Repetition codes, Hamming codes, Minimum distance of block codes, Soft-decision decoding, Automatic-repeat-request schemes Linear codes Definition of linear codes, Generator matrices, Standard array, Parity-check matrices, Error syndromes, Error detection and correction, Shortened and extended linear codes	8
V	Convolution codes Encoding convolutional codes, Generator matrices for convolutional codes, Generator polynomials for convolutional codes, Graphical representation of convolutional codes, Viterbi decoder	8

- 1. Joy A. Thomas, Thomas M. Cover, "Elements of information theory", Wiley-Interscience; 2 edition (July 18, 2006)
- 2. S. Gravano, "Introduction to Error Control Codes" OUP Oxford (24 May 2001)
- 3. Robert B. Ash, "Information Theory", Dover Publications (November 1, 1990)
- 4. Todd k Moon, "Error Correction Coding: Mathematical Methods and Algorithms " Wiley, 2005

	NEC 032 DIGITAL IMAGE PROCESSING	3 1 0
Unit	Topic	Lectures
I	Introduction: Overview of Image Processing, Nature of Image Processing, Application area of image processing, Digital Image Representation, Types of images, Digital Image Processing Operations, Fundamental steps in DIP, Overview of Digital Image Systems, Physical Aspect of Image Acquisition, biological Aspect of Image Acquisition, sampling & quantization, Digital Halftone Process, Image storage and File formats.	8
П	Image Transforms: Need for image transforms, Properties of Fourier transform, Discrete cosine transform, Discrete sine transform, Hadamard transform, Haar transform, Slant transform, SVD and KL transforms, Comparison between transforms. Image Enhancement: Image Quality and Need for image enhancement, Image enhancement operations, Image enhancement in spatial domain, histogram based techniques, Spatial Filtering concepts, Image smoothing spatial filters, Image Sharpening spatial filters, Image smoothing in frequency domain filtering, Image sharpening in frequency domain, Homomorphism filtering.	8
III IV	 Image Restoration: Introduction to degradation, Types of Image degradations, image degradation models, noise modeling, Estimation of degradation functions, Image restoration in presence of noise only, Periodic noise and band – pass and band reject filtering, difference between enhancement & restoration, Image restoration techniques. Image Compression: Image compression model, Compression algorithms 	8 8 8
	and its types, Type of redundancy, lossless compression algorithms, Lossy compression algorithms, Image and video compression standards.	
V	Image Segmentation: Introduction, Detection of Discontinuities, Edge Detection, Hough Transforms and Shape Detection, corner detection, Principle of thresholding, Principle of region - growing.	8

- 1. S. Sridhar, "Digital Image Processing", OXFORD University Press, Second Edition.
- 2. Rafael C. Gonzalez Richard E woods Steven L. Eddins, "Digital Image", Pearson.
- 3. Rafael C. Gonzalez Richard E woods Steven L. Eddins, "Digital Image Processing Using MATLAB", Mc Graw Hill, 2nd Edition.
- 4. Anil K Jain, "Fundamentals of Digital Image Processing", Pearson.

NEC	033 VOICE OVER IP	3 1 0
Unit	Торіс	Lectures
Ι	Introduction: Carrier-Grade, VoIP, VoIP Challenges, Overview of the IP	8
	Protocol Suite, The Internet Protocol, IP Version 6, IP Multicast, The	
	Transmission Control Protocol, The User Datagram Protocol, The Stream	
	Control Transmission Protocol, The Real-Time Transport Protocol, The RTP	
	Control Protocol, Security and Performance Optimization	
	Speech-Coding Techniques	
	A Little about Speech, Audio, and Music, Voice Sampling, Voice Quality,	
	Types of Speech Coders, Waveform Coders, Analysis-by-Synthesis Codecs,	
	G.722–Wideband Audio	_
II	Signaling Protocols:	8
	H.323: Multimedia Conferencing over IP The H.323 Architecture, RAS	
	Signaling, Call Signaling, Call Scenarios, H.245 Control Signaling,	
	Conference Calls, Securing an H.323 Network.	
	The Session Initiation Protocol The SIP Architecture, Overview of SIP	
	Messaging Syntax, Examples of SIP Message Sequences, Redirect and Proxy	
	Servers, The Session Description Protocol, Usage of SDP with SIP, SIP	
	Extensions and Enhancements, Usage of SIP for Features and Services,	
III	Interworking	8
111	Distributed Gateways and the Softswitch Architecture	8
	Separation of Media and Call Control, Softswitch Architecture, Protocol Requirements for Controlling Media Catavaya, Protocola for Controlling	
	Requirements for Controlling Media Gateways, Protocols for Controlling Media Gateways, MGCP, MEGACOP/H.248.1.	
IV	VoIP and SS7	8
1 V	The SS7 Protocol Suite, SS7 Network Architecture, ISUP, Performance	0
	Requirements for SS7, SIGTRAN, Interworking SS7 and VoIP Architectures	
V	Quality of Service	8
v	The Need for QoS, Overview of QoS Solutions, The Resource Reservation	0
	Protocol, DiffServ, Multiprotocol Label Switching, Combining QoS Solutions	
	Trotocol, Emisery, Multiplotocol Laber Switching, Combining Qos Solutions	I

- 1. Richard Swale, Daniel Collins," Carrier-Grade VoIP", McGraw-Hill Education 3rd Edition,2014.
- 2. Olivier Hersent, Jean Pierre Petit, David Gurle, "IP Telephony Deploying Voice Over-IP Protocols", John Wiley & Sons Ltd, 2005

NEC 034 FILTER DESIGN			1	0
Unit	Торіс	Le	ctu	res
Ι	Introduction: Fundamentals, Types of filters and descriptive terminology, why we use Analog Filters, Circuit elements and scaling, Circuit simulation and modelling. Operational amplifiers: Opamp models, Opamp slew rate, Operational amplifiers with resistive feedback: Noninverting and Inverting, Analyzing Opamp circuits, Block diagrams and feedback, The Voltage follower, Addition and subtraction, Application of Opamp resistor circuits.			
II	First order filter: Bilinear transfer functions and frequency response – Bilinear transfer function and its parts, realization of passive elements, Bode plots, Active realization, The effect of A(s), cascade design.			
III	Second order low pass and band pass filters: Design parameters, Second order circuit, frequency response of low pass and band pass circuits, Integrators and others biquads.			
IV	Second order filters with arbitrary transmission zeros: By using summing, By voltage feed forward, cascade design revisited. Low pass filters with maximally flat magnitude: the ideal low pass filter, Butterworth response, Butterworth pole locations, low pass filter specifications, arbitrary transmission zeros.			
V	Low pass filter with equal ripple (Chebyshev) magnitude response: The chebyshev polynomial ,The chebyshev magnitude response, Location of chebyshev poles, Comparison of maximally flat & equal-ripple responses, Chebyshev filter design Inverse chebyshev and cauer filters: Inverse chebyshev response, From specifications to pole and zero locations, Cauer magnitude response, Chebyshev rational functions, Cauer filter design.			

1. Rolf. Schaumann, Haiqiao Xiao, Mac. E. Van Valkenburg, "Analog Filter Design", 2nd Indian Edition, Oxford University Press.

- 1. J. Michael Jacob ,"Applications and Design with Analog Integrated Circuits", Second edition, Pearson.
- 2. T. Deliyannis, Yichuang Sun, J.K. Fidler, "Continuous-Time Active Filter Design", CRC Press.

	NEC 035 APPLIED FUZZY ELECTRONIC SYSTEMS	3 1 0
Unit	Topic	Lectures
I.	History of Fuzzy Logic, Fuzzy Sets, Possibility Distributions, Fuzzy Rules, Fuzzy Sets, Operations of Fuzzy Sets, Properties of Fuzzy Sets, Geometric Interpretations of Fuzzy Sets, Possibility Theory, Fuzzy Relations and their Compositions, Fuzzy Graphs, Fuzzy Numbers, Functions with Fuzzy Arguments, Arithmetic Operations of Fuzzy Numbers.	8
II.	Fuzzy Rules: Fuzzy Mapping Rule, Fuzzy Implication Rule, Fuzzy Rule Based Models for Function Approximations, Theoretical Foundation of Fuzzy Mapping Rules, Types of Fuzzy Rule Based Models: Mamdani Model, TSK Model, Standard Additive Model, Fuzzy Implications and Approximate Reasoning: Propositional Logic, First Order Predicate Calculus, Fuzzy Implications, Approximate Reasoning, Criteria and Family of Fuzzy Implications, Possibility vs. Probability, Probability of Fuzzy Event, Probabilistic Interpretations of Fuzzy Sets, Fuzzy Measure.	8
III.	Uncertainty in information; Classical Sets, Fuzzy Sets and their properties; Cardinality of Classical Relations and their properties, The a- Level Set, Cardinality of Fuzzy Relations and their properties; Composition; Tolerance and Equivalence relationship; Membership Functions; Fuzzification and Defuzzification process; Fuzzy to Crisp Conversions; Lambda cuts; Extension Principle, Crisp functions and its mapping, Fuzzy functions and its mapping; Fuzzy Numbers; Internal Analysis in Arithmetic.	8
IV.	Approximate method of Extension, Vertex Method, DSW Algorithm, and Restricted DSW Algorithm and their comparison, Classical Predicate Logic; Fuzzy Logic; Approximate Reasoning; Fuzzy Tautologies, Contradictions, Equivalence, and Logical Proof; Fuzzy Rule Based Systems, Models of Fuzzy AND, OR, and Inverter; Fuzzy Algebra; Truth Tables; Fuzzy Functions; Concept of Fuzzy Logic Circuits; Fuzzy Flip- Flop; Fuzzy Logic Circuits in Current Mode, Furry Numbers.	8
V.	Fuzzy Logic in Control Engineering: Fundamental Issues in Control Engineering, Control Design Process, Semiformal Aspects of Design Process, Mamdani Architecture of Fuzzy Control, The Sugeno-Takagi Architecture. Fuzzy Logic in Hierarchical Control Architecture, Historical Overview and Reflections on Mamdani's Approach, Analysis of Fuzzy Control System via Lyapunov's Direct Method, Linguistic Approach to the analysis of Fuzzy Control System, Parameter Plane Theory of Stability, Takagi-Sugeno-Kang Model Of Stability Analysis.	8

- 1. John Yen, Reza Langari, "Fuzzy Logic: Intellegent Control and Information", Pearson Publication.
- 2. Ahmad M. Ibrahim, "Introduction to Applied Fuzzy Electronics", Prentice Hall Publication.
- 3. Ahmad M. Ibrahim, "Fuzzy Logic for Embedded Systems Applications", Newnes Publications.
- 4. Witold Pedrycz, Fernando Gomide, "Fuzzy Systems Engineering: Toward Human-Centric Computing", John Wiley Publications.

NEC 751 Optical Communication & Networking Lab

Part - A

- **1.** Familiarisation of different types of cables and different commands.
 - a) Identify Cat5 cable, RJ 45 Connector, Crimping Tool, Wire Stripper

b) Use Wire Stripper for Cutting wire shield and Understanding of Internal Structure of Cat 5 Cable

- c) Finding Pin No-1 on RJ 45 Connector and Inserting Wires in connector
- d) Crimping of RJ45 connector using Crimping tool
- e) Preparation of Straight cable (used for Dissimilar devices such as PC to Switch, PC to router) and Cross cables (used for similar devices such as PC to PC, Router to Router, Switch to Switch)
- f) Understand different commands like ping, treacert, ifconfig, dig etc..
- 2. Making a subnet and configuring router
 - a) Understand the working of a router & method to access the router via console or using telnet, different types of cables used for connectivity.
 - b) Different types of show commands & their purpose.
 - c) Assignment of IP address and enabling layer 3 connectivity.
 - d) Implement sub netting
- **3.** Configuring web and DHCP servers
 - a) Understand Internet Information Services tool and its installation.
 - b) To configure web services using IIS tool.
 - c) Configure DHCP
- **4.** Configuring VLAN
 - a) Understand the configuration of Vlan in a switch
 - b) How to make the port of a switch as an access port & a trunk port, purpose of the Vlan in a network
 - c) Different types of show commands & their purpose.
- 5. To implement a simple file transfer protocol (FTP) using connection oriented and connectionless sockets.
- **6.** To develop a concurrent file server that spawns several threads, one for each client requesting a specific file.
- 7. To develop a simple chatting application using (i) Connection oriented and (ii) Connectionless sockets

Part – B (Any 4 Experiments):

- 1. To setting up fiber optic analog link.
- 2. Study and measurement of losses in optical fiber.
- 3. Study and measurement of numerical aperture of optical fiber.
- 4. Study and perform time division multiplexing (digital).
- 5. Study of framing in time division multiplexing.
- 6. Study of Manchester coding and decoding.
- 7. Study of voice coding and codec chip.
- 8. Study and measure characteristics of fiber optic LED's and photo detector.

NEC 752 Electronics Circuit Design Lab.

In this practical course students will carry out a design oriented project work using various analog/ digital building blocks which they have already studied in their analog electronic/ digital electronic courses such as Electronic circuits, integrated circuits and filter design. The project may include but not restricted to any of the following:

- 1. Universal op-amp based biquad
- 2. Universal OTA biquad
- 3. Amplitude control or stabilization applied to any sinusoidal oscillators
- 4. Op-amp/ OTA based function generator
- 5. Any application of log/antilog circuits
- 6. Any applications of analog multiplier/ divider
- 7. Any digital system design and its hardware implementation using TTL/ CMOS ICs
- 8. Any circuit idea (not studied in the course) using 555 Timer in conjunction with any other ICs

The above must include

- 1. Design the circuit.
- 2. Make hardware and measure various parameters.
- 3. Simulation in Spice of the designed circuit.
- 4. Comparison of measured and simulated results.

A report is to be made for evaluation.

		
Unit	Topic	Lectures
I	Evolution of mobile radio communication fundamentals. General Model of Wireless Communication Link, Types of Signals, Cellular Infrastructure, Cellular System Components, Antennas for Cellular Systems, Operation of Cellular Systems, Channel Assignment, Frequency reuse, Channel Assignment strategies, Handoff Strategies Cellular Interferences, Sectorization; Wireless Channel and Radio Communication, Free Space Propagation Model, Channel Noise and Losses, Fading in Land Mobile Systems, Multipath Fading, Fading Effects on Signal and Frequency, Shadowing; Wireless Channel Modeling: AWGN Channel, Rayleigh Channel, Rician Fading Channel, Nakagami Fading Channel, Ocumura and Hata Path Loss Model; Channel Modelling: Stochastic, Flat Fading, Wideband Time-Dispersive Channel Modelling.	8
Π	Theory of Vocoders, Types of Vocoders; Spread Spectrum Modulation, Pseudo-Noise Codes with Properties and Code Generation Mechanisms, DSSS and FHSS Systems, Time Hopping and Hybrid Spread Systems; Multicarrier Modulation Techniques, Zero Inter Symbol Interference Communication Techniques, Detection Strategies, Diversity Combining Techniques: Selection Combining, Threshold Combining, Equal Gain Combining, Maximum Ratio Combining; Spatial Diversity and Multiplexing in MIMO Systems, Channel Estimation,	8
III	Equalization Techniques: Transversal Filters, Adaptive Equalizers, Zero Forcing Equalizers, Decision Feedback Equalizers, and related algorithms; Multiplexing and Multiple Access: FDMA, TDMA, CDMA, OFDMA, SC- FDMA, IDMA Schemes and Hybrid Method of Multiple Access Schemes, RAKE Receiver; Multiple Access for Radio Packet Systems: Pure ALOHA, Slotted ALOHA, CSMA and their versions; Packet and Pooling Reservation Based Multiple Access Schemes.	8
IV	GSM system for mobile Telecommunication, General Packet Radio Service, Edge Technology; CDMA Based Standards: IS 95 to CDMA 2000, Wireless Local Loop, IMT 2000 and UMTS, Long Term Evolution (LTE), Mobile Satellite Communication.	8
V	Introduction to Mobile Adhoc Networks, Bluetooth, Wi-Fi Standards, WiMax Standards, Li-Fi Communication, Ultra-Wideband Communication, Mobile data networks, Wireless Standards IMT 2000, Introduction to 4G and concept of NGN.	8

- 1. T.S. Rappaport, "Wireless Communication-Principles and practice", Pearson Publications, Second Edition.
- 2. Upena Dalal, "Wireless Communication and Networks", Oxford Press Publications.
- 3. T L Singal , "Wireless Communications ", McGraw Hill Publications.

- 1. Andrea Goldsmith, "Wireless Communications", Cambridge University Press.
- 2. S. Haykin & M. Moher, "Modern wireless communication", Pearson, 2005.

NEC 802	2 OPTICAL NETWORK	3 1 0
Unit	Topic	Lectures
Ι	Introduction to Optical Network:- Optical Networks: multiplexing techniques, second generation optical networks. The optical layer, optical packet switching. Transmission Basics: wavelength, frequencies and channel spacing, wavelength standards. Non linear Effects: Effective length and area, stimulated brillouin scattering, stimulated raman scattering, Propagation in a non linear medium, self phase modulation, cross phase modulation Four wave mixing.	8
Π	Components:-Couplers: Principles of operation, Conservation of energy, Isolators and circulators: Principles of operation Multiplexers and filters: Gratings, diffraction pattern, Bragg grating, Fiber gratings, Fabry-perot filters, multilayers dielectric thin – film filters, Mach-Zehnder interferometers, Arrayed waveguide grating, Acousto-optic tunable filter, High channel count multiplexer Architecture. Switching : large optical switches, Optical switch Technologies, large electronic switches wavelength converters: Optoelectronic Approch , optical grating, interferometric techniques wave mixing. Crosstalk: Intra-channel crosstalk, inter-channel crosstalk, crosstalk in Networks, Bidirectional system crosstalk reduction.	8
III	 Networks- SONET/SDH: Multiplexing, SONET/SDH layers, SONET Frame structure, SONET/SDH physical layer, Elements of a SONET/SDH infrastructure. ATM: Function of ATM, Adaptation layers, Quality of service. IP: Routing and forwarding, QOS, WDM Network elements: Optical line terminals, Optical line amplifiers,. Optical add/Drop multiplexers: Architecture, reconfigurable OADMS, Optical cross connects: All optical OXC configuration. WDM Network Design Cost Trade-offs, Light path Topology Design, and 	8
1 V	Routing and wavelength assignment problems, Dimensioning Wavelength Routing Networks, Network Survivability, Basic Concepts, Protection in SONET/SDH, Protection in client layer, Optical Layer Protection, Different Schemes, Interworking between Layers, Access Networks, Network Architecture Overview, Enhanced HFC, FTTC, PON evolution	0
V	Optical Switching, OTDM, Synchronization, Header Processing, Buffering, Burst Switching, Deployment Considerations- SONET/SDH core Network	8

1. Biswanath Mukherjee "Optical WDM Networks" Springer Pub 2006.

R. Ramaswami, & K. N. Sivarajan, "Optical Networks a Practical perspective", Morgan Kaufmann Publishers, 3rd Ed.
 U. Black, "Optical Networks: Third Generation Transport Systems"/ Pearson Educations

Reference Books:

ELECTIVE IV

	NEC 041 ELECTRONIC SWITCHING	3 1 0
Unit	Торіс	Lectures
Ι	Evolution of switching systems: Introduction, Message switching, Circuits switching, Functions of a switching system, Register- transiator-senders, Distribution frames, Crossbar switch, A general trucking, Electronic switching, Reed- electronic system, Digital switching systems.	8
II	Digital Switching: Switching functions, Space Division Switching, Time Division Switching, Two-Dimensional Switching, Digital Cross-Connect Systems, Digital Switching in an Analog Environment.	8
III	Telecom Engineering: Network Traffic Load and Parameters, Grade of Service and Blocking Probability, Modeling Switching Systems, Incoming Traffic and Service Time Characterization, Blocking models and Loss Estimates, Delay Systems	8
IV	Control of switching systems: Introduction, Call-processing functions, Common control, Reliability, availability and security; Stored-program control. Signalling: Introduction, Customer line signalling, Audio-frequency junctions and trunk circuits, FDM carrier systems, PCM signaling, Inter- register signalling, Common-channel signalling principles, CCITT signalling system no. 6 and 7, Digital customer line signalling.	8
V	Packet Switching: Packet Switching, Statistical Multiplexing, Routing Control (dynamic routing, virtual circuit routing and fixed-path routing), Flow Control, X.25, Frame Relay, TCP/IP ATM Cells, ATM Service Categories, ATM Switching (ATM Memory Switch, Space-Memory Switch, Memory-Space Switch, Memory-Space- Memory switch, Banyan Network Switch).	8

- 1. Thiagarajan Viswanathan & Manav Bhatnagar, "Telecommunication Switching Systems and Networks", PHI.
- 2. J.E. Flood, "Telecommunication Switching, Traffic and Networks", Pearson Education.
- 3. John C. Bellamy, "Digital Telephony", John Wiley, 3rd Ed.

NEC 042 DIGITAL SYSTEM DESIGN USING VHDL 3 1 0		
Unit	Торіс	Lectures
Ι	Introduction to VHDL, reserve words, structures, modeling, objects, data	8
	type and operators, sequential statements and processes, sequential	
	modeling and attributes, conditional assignment, concatenation and case,	
	array loops and assert statements, subprograms.	
II	Digital System Design Automation- Abstraction Levels, System level	8
	design flow, RTL design flow, VHDL.	
	RTL Design with VHDL – Basic structures of VHDL, Combinational	
	circuits, Sequential circuits, Writing Test benches, Synthesis issues, VHDL Essential Terminologies	
	VHDL Constructs for Structures and Hierarchy Descriptions – Basic	
	Components, Component Instantiations, Iterative networks, Binding	
	Alternatives, Association methods, generic Parameters, Design	
	Configuration	
III	Concurrent Constructs for RT level Descriptions - Concurrent Signal	8
	Assignments, Guarded signal assignment	
	Sequential Constructs for RT level Descriptions – Process Statement,	
	Sequential WAIT statement, VHDL Subprograms, VHDL library Structure,	
	Packaging Utilities and Components, Sequential Statements.	
	VHDL language Utilities - Type Declarations and Usage, VHDL	
	Operators, Operator and Subprogram overloading, Other TYPES and TYPE	
	- related issues, Predefined Attributes	
IV	VHDL Signal Model – Characterizing hardware languages, Signal	8
	Assignments, Concurrent and Sequential Assignments, Multiple Concurrent	
X 7	Drivers Standard Resolution.	0
V	Hardware Cores and Models - Synthesis rules and styles, Memory and	8
	Queue Structures, Arithmetic Cores, Components with Separate Control	
	and Data parts. Core Design Test and Testability - Issues Related to Design Test, Simple	
	Test benches.	

- 1. Z. Navabi, "VHDL-Modular Design and Synthesis of cores and Systems", TMH 3rd Edition.
- 2. R.D.M. Hunter, T. T. Johnson, "Introduction to VHDL" Spriger Publication, 2010.
- 3. J Bhasker, "VHDL Primer" Pearson Education.

- 3. C. H. Roth, "Digital System Design using VHDL", PWS Publishing
- 4. Douglas Perry, "VHDL- Programming by examples", MGH

NI	EC 043 SPEECH PROCESSING	3 1 0
Unit	Topic	Lectures
I	Digital models for speech signals: Mechanism of speech production & acoustic phonetics, the acoustic theory of speech production, lossless tube models, and digital models for speech signals.	
Ш	Time Domain methods of speech sampling: Time dependent processing of speech, short time energy and average magnitude, short time average zero crossing rate, discrimination between speech& silence, pitch period estimation using parallel processing, short time autocorrelation function & AMDF, pitch period estimation using autocorrelation function.	
III	Short time Fourier Analysis: Definition and properties, design of filter banks, implementation of filter bank summation method using FFT, spectrographic displays, pitch detection, analysis by synthesis phase, vocoder and channel vocoder.	
IV	Homomorphic speech processing: Homomorphic system for convolution, complex cepstrum of speech, pitch detection using Homomorphic processing, formant estimation, Homomorphic vocoder.	
V	Linear Predictive Coding of Speech: Basic principles of linear predictive analysis, the autocorrelation method, computation of the gain for the model, solution of LPC equations for auto correlation method, prediction error and normalized mean square error, frequency domain interpretation of mean squared prediction error relation of linear predictive analysis to lossless tube models, relation between various speech parameters, synthesis of speech from linear predictive parameters, application of LPC parameters.	

Text / Reference Books:

- R. L. Rabiner & R.W. Schafer, "Digital Processing of speech signals", Pearson Education.
 B. Gold and Nelson Morgon, "Speech and audio signal processing", Wiley India Edition, 2006.

	NEC 044 ADVANCED DISPLAY TECHNOLOGIES & SYSTEMS	3 1 0
Unit	Торіс	Lectures
Ι	Properties of Light, Geometric Optics, Optical Modulation; Vision and Perception: Anatomy of Eye, Light Detection and Sensitivity, Spatial Vision and Pattern Perception, Binocular Vision and Depth Perception; Driving Displays: Direct Drive, Multiplex and Passive Matrix, Active Matrix Driving, Panel Interfaces, Graphic Controllers, Signal Processing Mechanism; Power Supply: Fundamentals, Power Supply Sequencing.	8
II	Display Glasses, Inorganic Semiconductor TFT Technology, Organic TFT Technology; Transparent Conductors, Patterning Processes: Photolithography for Thin Film LCD, Wet Etching, Dry Etching; Flexible Displays: Attributes, Technologies Compatible with Flexible Substrate and Applications, TFT Signal Processing Techniques; Touch Screen Technologies: Introduction, Coatings, Adhesive, Interfaces with Computer Mechanism.	8
III	Inorganic Phosphors, Cathode Ray Tubes, Vacuum Florescent Displays, Filed Emission Displays; Plasma Display Panels, LED Display Panels; Inorganic Electroluminescent Displays: Thin Film Electroluminescent Displays, AC Powder Electroluminescent Displays; Organic Electroluminescent Displays: OLEDs, Active Matrix for OLED Displays; Liquid Crystal Displays: Fundamentals and Materials, Properties of Liquid Crystals, Optics and Modeling of Liquid Crystals; LCD Device Technology: Twisted Numeric and Super twisted Numeric Displays, Smectic LCD Modes, In-Plane Switching Technology, Vertical Aligned Nematic LCD Technology, Bistable LCDs, Cholesteric Reflective Displays; LCD Addressing, LCD Backlight and Films, LCD Production, Flexoelectro-Optic LCDs.	8
IV	Paper like and Low Power Displays: Colorant Transposition Displays, MEMs Based Displays, 3-D Displays, 3-D Cinema Technology, Autostereoscopic 3- D Technology, Volumetric and 3-D Volumetric Display Technology, Holographic 3-D Technology; Mobile Displays: Trans-reflective Displays for Mobile Devices, Liquid Crystal Optics for Mobile Displays, Energy Aspects of Mobile Display Technology.	8
V	Microdisplay Technologies: Liquid Crystals on Silicon Reflective Microdisplay, Transmissive Liquid Crystal Microdisplay, MEMs Microdisplay, DLP Projection Technology; Microdisplay Applications: Projection Systems, Head Worn Displays; Electronic View Finders, Multifocas Displays, Occlusion Displays, Cognitive Engineering and Information Displays; Display Metrology, Standard Measurement Procedures, Advanced Measurement Procedures: Spatial Effects, Temporal Effects, Viewing Angle, Ambient Light; Display Technology Dependent Issues, Standards and Patterns, Green Technologies in Display Engineering.	8

1. Janglin Chen, Wayne Cranton, Mark Fihn, "Handbook of Visual Display Technology", Springer Publication.

	NEC 045 SATELLITE & RADAR SYSTEMS	310
Unit	Торіс	Lectures
I	Introduction to radar, radar block diagram and operation, radar frequencies, Applications of radar. The Radar Equation: Detection of signals in noise, Receiver noise and the signal to noise ratio, Probabilities of detection and false alarm, Integration of Radar Pulses, Radar cross section of targets, Radar cross section fluctuations, Transmitter Power, Pulse Reception Frequency, Antenna	8
	Parameters, System Losses.	
II	MTI and Pulse Doppler Radar: Introduction to Doppler and MTI Radar, Delay Line cancellers, Staggered Pulse Reception Frequencies, Doppler Filter Banks, Digital MTI Processing, Moving Target Detector, Limitations to MTI Performance.	8
III	Tracking Radar: sequential lobing, conical scan, monopulse Tracking, low angle tracking, tracking in range. Elements of Satellite Communications, Orbital mechanics, look angle and orbit determination, launches and launch vehicle, orbital effects. Introduction to geo-synchronous and geo-stationary satellites.	8
IV	Satellite sub-systems: Attitude and Orbit control systems, Telemetry, Tracking and command control system, Power supply system, Introduction to satellite link design, basic transmission theory, system noise temperature and G/T ratio, design of down link and uplink, design of satellite links for specified C/N, satellite data communication protocols.	8
V	Direct broadcast satellite television and radio, satellite navigation and the global positioning systems, GPS position location principle, GPS receivers and codes, Satellite Signal Acquisition, GPS navigation Message, GPS Signal Levels, Timing Accuracy, GPS Receiver Operation.	8

Text / Reference Books:

- 1. Merrill I. Skolnik "Introduction to Radar Systems", Mc Graw-Hill.
- 2. J.C.Toomay, Paul J. Hannen "Principles of Radar", PHI Learning.
- 3. B.Pratt, A.Bostian, "Satellite Communications", Wiley India.
- 4. D.Roddy, "Satellite Communications", TMH.